首页 / 电子技术
电化学储能技术特点和历史发展
2019-05-05 09:16:29
国内外电化学储能政策
为了抢占能源竞争战略的制高点,主要发达国家和地区都加强了顶层设计战略主导,能源科技战略推陈出新。
①美国。2018 年 4 月,美国针对涵盖新能源和新能源汽车产业的“中国制造 2025”加征 500 亿美元关税;同年 9 月,美国能源部(doe)为储能联合研究中心(jcesr)投入 1.2 亿美元(5 年),以推进电池科学和技术研究开发。
②欧盟。2018 年 5 月,欧洲电池联盟发布战略行动计划,提出六大战略行动,将启动预计规模为 10 亿欧元的新型电池技术旗舰研究计划,打造一个创新、可持续、具有全球领导地位的电池全价值链;同年 6 月,欧盟在“地平线 2020”计划(支持能源和交通领域电池研究,经费 1.14 亿欧元)基础上制定了“地平线欧洲”框架计划,明确支持“可再生能源存储技术和有竞争力的电池产业链”,其中气候、能源和交通领域的研发经费为 150 亿欧元。
③日本。2018 年 7 月,日本经济产业省发布了《第五期能源基本计划》,提出降低化石能源依赖度,举政府之力加快发展可再生能源;经济产业省下属的新能源与工业技术开发组织(nedo)通过了“创新性蓄电池-固态电池”开发项目,将联合 23 家企业、15 家日本国立研究机构,并投入 100 亿日元,用以攻克全固态电池商业化应用的瓶颈技术,为在 2030 年左右实现规模化量产奠定技术基础。
④德国。2018 年 9 月,德国公布《第七期能源研究计划》,计划在未来 5 年投入 64 亿欧元,支持多部门通过系统创新推进能源转型,明确支持电力储能材料的研究。美、日、欧通过前瞻性布局和重金投入推动电池技术研发,无疑将加快电化学储能的规模化应用步伐。
中国对电化学储能技术也进行了规范和指导发展。2016 年 4 月,国家能源局颁布《2016 年能源工作指导意见》;8 月,工信部颁布《中国制造 2025》;10 月,工信部发布《节能与新能源汽车技术路线图》;11 月,国务院印发《“十三五”国家战略性新兴产业发展规划》(国发〔2016〕67 号)。2017 年,财政部、科技部、工信部、国家能源局联合发布《关于促进储能技术与产业发展的指导意见》。上述文件均明确提出加快全钒液流电池、锂离子电池、铅炭电池等电化学储能技术的发展。与此同时,科学技术部、国家自然科学基金委员会、中国科学院也对电化学储能技术和应用示范进行立项支持。然而,这些研究支持相对分散,其实际效果还有待考察。值得一提的是,从 2013 年至今,中国政府对电动汽车行业的补贴已达数百亿美元之巨,有效促进了锂离子电池技术和产业链的发展。然而,对于在大规模储能领域的关键技术应用,尚无相应的补贴政策。
铅炭电池(或先进铅酸电池)是传统铅酸电池的升级产品,通过在负极加入特种炭材料,弥补了铅酸电池循环寿命短的缺陷,其循环寿命可达到铅酸电池的 4 倍以上,是目前成本最低的电化学储能技术。并且,由于铅炭电池适合在部分荷电工况下工作、安全性好,因而适合在各种规模的储能领域应用。在国际上,美国桑迪亚国家实验室、美国 axion power 公司、国际先进铅酸电池联合会、澳大利亚联邦科学与工业研究组织、澳大利亚 ecoult 公司和日本古河电池公司等机构均开展了铅炭电池的研发工作,并成功将该技术应用在数 mw 的储能系统中,可满足中小规模储能和大规模储能市场的需求。
中国在铅炭电池研究、开发、生产与示范应用方面也取得了长足的进步。比较有代表性的是南都电源、双登电源等铅酸电池企业,它们通过与中国人民解放军防化研究院、哈尔滨工业大学等单位合作,开发出自己的铅炭电池技术,并在国内成功实施了多个风光储应用示范。例如,浙江鹿西岛 6.8 mwh 并网新型能源微网项目,珠海万山海岛 8.4 mwh 离网型新能源微网项目,无锡新加坡工业园 20 mw 智能配网储能电站等。2018 年,中国科学院大连化学物理研究所与中船重工风帆股份有限公司合作,开发出拥有自主知识产权的高性能、低成本储能用铅炭电池,开展了光伏储能应用示范。
目前,尽管铅炭电池的循环寿命比铅酸电池有大幅提高,但是比起锂离子电池来说还有明显不足。如何进一步提高铅炭电池寿命,以及如何进一步降低铅炭电池成本,成为其后续发展亟待解决的关键问题。
液流电池
液流电池是一类较独特的电化学储能技术,通过电解液内离子的价态变化实现电能存储和释放。自 1974 年 taller 提出液流储能电池概念以来,中国、澳大利亚、日本、美国等国家相继开始研究开发,并研制出多种体系的液流电池。这些液流电池根据正负极活性物质不同,可分为铁铬液流电池、多硫化钠溴液流电池、全钒液流电池、锌溴液流电池等体系。其中,全钒液流电池技术最为成熟,已经进入了产业化阶段。全钒液流电池使用水溶液作为电解质且充放电过程为均相反应,因此具有优异的安全性和循环寿命(>1 万次),在大规模储能领域极具应用优势。
在国际上,日本住友电工的技术最具代表性,其 2016 年在日本北海道建成了 15 mw/60 mwh 的全钒液流电池储能电站,主要在风电并网中应用。在中国,中国科学院大连化学物理研究所的技术最具代表性,其在 2008 年将该技术转入大连融科储能技术发展有限公司(以下简称“融科储能”)进行产业化推广。融科储能于 2012 年完成了当时全球最大规模的 5 mw/10 mwh 商业化全钒液流电池储能系统,已经在辽宁法库 50 mw 风电场成功并网并安全可靠稳定运行了近 7 年,该成果奠定了我国在液流储能电池领域的世界领军地位。2014 年,融科储能开发的全钒液流储能电池储能系统成功进军欧美市场,开始全球战略布局。2016 年,国家能源局批复融科储能建设规模为 200 mw/800 mwh 的全钒液流储能电池调峰电站,用于商业化运行示范。目前,全钒液流储能电池依然存在能量密度较低、初次投资成本高的问题,正在通过市场模式和技术创新予以完善。在未来,还需要开发具有更低成本的长寿命液流电池技术,以实现技术的迭代发展。
我国电化学储能技术的发展战略
当前,我国的能源革命还处于初期阶段,相应的储能市场体系还不完善,有必要通过补贴的方式迅速培养出完整的市场和产业链。在推动能源生产革命和消费革命的过程中,要充分发挥市场对资源的调配作用,使各类电化学储能技术依据其技术特点统筹发展。在关键技术攻关方面,仍应继续加强对研发的投入,并充分调动国内产学研优势力量进行联合攻关。
对于液流电池技术,需要进一步支持全钒液流电池降低成本,开展百 mw 级系统的应用示范并推广应用;同时,加强高能量密度、低成本锌基液流储能电池的研究,突破其规模放大技术,开展示范应用,推进其产业化。对于铅炭电池技术,战略发展的重点在于实现炭材料的国产化,进一步提高铅炭电池的性价比,并在器件量产的基础上,推动储能系统集成技术的发展和应用领域的拓展。对于锂离子技术,未来需要发展不易燃的电解液和固态电解质以提高其安全性,结合退役动力电池梯次利用以大幅降低其成本,并实现废旧锂离子电池的无害化处理。与此同时,需要重点开发耐低温的锂离子电池,以实现在我国北方地区的普及应用。除此之外,需要布局新兴钠离子电池技术的应用示范。虽然钠离子电池能量密度不及锂离子电池,但钠离子电池的原材料储量丰富、成本低廉,在大规模储能领域的优势明显。未来需要进一步降低成本,提升循环寿命,全面评测钠离子电池的电化学及安全性能,尽快建立钠离子电池正极材料、负极材料、电解质盐的产业链,开展 mw 级系统的应用示范,推进其产业化。
作为能源革命的关键支撑技术,电化学储能未来发展的前景
(作者:李先锋,中国科学院大连化学物理研究所;张洪章,中国科学院大连化学物理研究所;郑琼,中国科学院大连化学物理研究所;阎景旺,中国科学院大连化学物理研究所;郭玉国,中国科学院化学研究所;胡勇胜,中国科学院物理研究所。《中国科学院院刊》供稿:资讯最新内容
手机 |
相关内容
梦芯科技独立北斗芯片模块MXT2721
梦芯科技独立北斗芯片模块MXT2721隆重发布,芯片,北斗,模块,能力,导航,支持,梦芯科技是一家致力于研发和生产半导体产品的高科技公司什么是半桥驱动器芯片,半桥驱动器芯
什么是半桥驱动器芯片,半桥驱动器芯片的组成、特点、原理、分类、操作规程及发展趋势,芯片,驱动器,发展趋势,分类,连接,转换,TPS5430电容式触摸按键屏中应用的高性能触
电容式触摸按键屏中应用的高性能触摸芯片,芯片,位置,触摸屏,能力,响应,用户,电容式触摸按键屏(Capacitive Touch Key Screen)是一种常晶振在激光雷达系统中的作用
晶振在激光雷达系统中的作用,作用,系统,激光雷达,晶振,可靠性,选择,激光雷达(Lidar)是一种利用激光进行测距的技术,广泛应用于自动驾驶智能传感器助力打造数字经济数字世
智能传感器助力打造数字经济数字世界,数字,经济,传感器,助力,智能,及时发现,PCM1801U智能传感器是一种能够感知环境并将感知结果转穿心电容与普通电容的区别?穿心电容
穿心电容与普通电容的区别?穿心电容为何能有效地滤除高频噪声?,噪声,高频,噪声抑制,较好,心电,结构,穿心电容与普通电容的区别主要体MPS全系列电机驱动产品,助力新能源
MPS全系列电机驱动产品,助力新能源汽车实现更好的智能化,产品,新能源汽车,助力,全系列,系统,实时,随着新能源汽车的快速发展,电机驱动探秘英伟达显卡的制造之路 | 英伟
探秘英伟达显卡的制造之路 | 英伟达断供GPU,中国大模型何去何从?,英伟达,模型,中国大,显卡,方案,能力,英伟达(NVIDIA)是全球领先的图形