首页 / 电子技术
半导体器件构成电子电路基本元件
2022-04-22 10:20:50
半导体器件是构成电子电路的基本元件,所用的材料是经过特殊加工且性能可控的半导体材料。
纯净的具有晶体结构的半导体称为本征半导体。
一、半导体:
物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(si)和锗(ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧,因而其导电性介于二者之间。
在形成晶体结构的半导体中,人为地掺入特定的杂质元素时,导电性能具有可控性;并且,在光照和热辐射条件下,其导电性还有明显的变化;这些特殊的性质就决定了半导体可以制成各种电子器件。
二、本征半导体的晶体结构
将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,称为晶格。由于相邻原子间的距离很小,因此,相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,这样的组合称为共价键结构。
除价电子外的正离子。
三、本征半导体中的两种载流子
晶体中的共价键具有很强的结合力,因此,在常温下,仅有极少数的价电子由于热运动(热激发)获得足够的能量,从而挣脱共价键的束缚变成为自由电子。与此同时,在共价键中留下一个空位置,称为空穴。原子因失掉一个价电子而带正电,或者说空穴带正电。在本征半导体中,自由电子与空穴是成对出现的,即自由电子与空穴数目相等。若在本征半导体两端外加一电场,则一方面自由电子将产生定向移动,形成电子电流;另一方面由于空穴的存在,价电子将按一定的方向依次填补空穴,也就是说空穴也产生定向移动,形成空穴电流。由于自由电子和空穴所带电荷极性不同,所以它们的运动方向相反,本征半导体中的电流是两个电流之和。
运载电荷的粒子称为载流子。导体导电只有一种载流子,即自由电子导电;而本征半导体有两种载流子,即自由电子和空穴均参与导电,这是半导体导电的特殊性质。
四、本征半导体中载流子的浓度
半导体在热激发下产生自由电子和空穴对的现象称为本征激发。自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,故达到动态平衡。换言之,在一定温度下,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当环境温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多,即载流子的浓度升高,因而必然使得导电性能增强。反之,若环境温度降低,则载流子的浓度降低,因而导电性能变差,可见,本征半导体载流子的浓度是环境温度的函数。理论分析表明。
应当指出,本征半导体的导电性能很差,且与环境温度密切相关。半导体材料性能对温度的这种敏感性,既可以用来制作热敏和光敏器件,又是造成半导体器件温度稳定性差的原因。
应当指出,本征半导体的导电性能很差,且与环境温度密切相关.半导体材料性能对温度的这种敏感性,既可以用来制作热敏和光敏器件,又是造成半导体器件温度稳定性差的原因.
通过扩散工艺,在本征半导体中掺人少量合适的杂质元素,便可得到杂质半导体。按掺入的杂质元素不同,可形成n型半导体和р型半导体;控制掺入杂质元素的浓度,就可控制杂质半导体的导电性能。
通过扩散工艺,在本征半导体中掺人少量合适的杂质元素,便可得到杂质半导体.按掺入的杂质元素不同,可形成n型半导体和р型半导体;控制掺入杂质元素的浓度,就可控制杂质半导体的导电性能.
在纯净的硅晶体中掺入五价元素(如磷),使之取代品格中硅原子的位置,就形成了n型半导体。。由于杂质原子的最外层有五个价电子,所以除了与其周围硅原子形成共价键外,还多出一个电子,如图1.1.3所示。多出的电子不受共价键的束缚,只需获得很少的能量,就成为自由电子。在常温下,由于热激发,就可使它们成为自由电子。而杂质原子因在晶格上,且又缺少电子,故变为不能移动的正离子。n型半导体中,自由电子的浓度大于空穴的浓度,故称自由电子为多数载流子,空穴为少数载流子;简称前者为多子,后者为少子,由于杂质原子可以提供电子,故称之为施主原子。n型半导体主要靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。
在纯净的硅晶体中掺入五价元素(如磷),使之取代品格中硅原子的位置,就形成了n型半导体.由于杂质原子的最外层有五个价电子,所以除了与其周围硅原子形成共价键外,还多出一个电子。多出的电子不受共价键的束缚,只需获得很少的能量,就成为自由电子.在常温下,由于热激发,就可使它们成为自由电子.而杂质原子因在晶格上,且又缺少电子,故变为不能移动的正离子.n型半导体中,自由电子的浓度大于空穴的浓度,故称自由电子为多数载流子,空穴为少数载流子;简称前者为多子,后者为少子,由于杂质原子可以提供电子,故称之为施主原子.n型半导体主要靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。
在纯净的硅晶体中掺人三价元素(如硼),使之取代晶格中硅原子的位置,就形成р型半导体。由于杂质原子的最外层有3个价电子,所以当它们与周围的硅原子形成共价键时,就产生
在纯净的硅晶体中掺人三价元素(如硼),使之取代晶格中硅原子的位置,就形成р型半导体3.由于杂质原子的最外层有3个价电子,所以当它们与周围的硅原子形成共价键时,就产生
了一个“空位”(空位为电中性),当硅原子的外层电子填补此空位时,其共价键中便产生一个空穴,如图1.1.4所示,而杂质原子成为不可移动的负离子。因而р型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。与n型半导体相同,掺入的杂质越多,空穴的浓度就越高,使得导电性能越强。因杂质原子中的空位吸收电子,故称之为受主原子。
从以上分析可知,由于掺入的杂质使多子的数目大大增加,从而使多子与少子复合的机会大大增多。因此,对于杂质半导体,多子的浓度愈高,少子的浓度就愈低。可以认为,多子的浓度约等于所掺杂质原子的浓度,因而它受温度的影响很小;而少子是本征激发形成的,所以尽管其浓度很低,却对温度非常敏感,这将影响半导体器件的性能。
最新内容
手机 |
相关内容
逆变器技术对新能源汽车市场增长的
逆变器技术对新能源汽车市场增长的重要性,市场,新能源汽车,逆变器,控制,高效率,能和,随着全球对环境保护和可持续发展的关注不断增多用途可回收纳米片面世,可用于电子
多用途可回收纳米片面世,可用于电子、能源存储、健康和安全等领域,能源,健康,传感器,结构,用于,芯片,近年来,纳米技术的快速发展给各分离式光电液位传感器与电容式液位
分离式光电液位传感器与电容式液位传感器对比,传感器,值会,温度,检测,测量,介电常数,分离式光电液位传感器与电容式液位传感器是常从概念到生产的自动驾驶软件在环(Si
从概念到生产的自动驾驶软件在环(SiL)测试解决方案,测试,解决方案,自动驾驶,传感器,评估,车辆,自动驾驶软件在环(SiL)测试是一种在计算悄然席卷企业级SSD市场的RISC-V主
悄然席卷企业级SSD市场的RISC-V主控,市场,企业级,性能,功耗,支持,低功耗,随着计算机技术的不断发展,企业级SSD(Solid State Drive)市场什么是空心电抗器,空心电抗器的基本
什么是空心电抗器,空心电抗器的基本结构、技术参数、工作原理、类型、执行标准、绝缘等级及适用环境,类型,等级,工作原理,执行,结构什么是带阻三极管,带阻三极管的基本
什么是带阻三极管,带阻三极管的基本结构、工作原理、电阻比率、常用型号、应用、检测、操作规程及发展历程,三极管,检测,工作原理,什么是射流继电器,射流继电器的基本
什么是射流继电器,射流继电器的基本结构、技术参数、工作原理、负载分类、如何选用、操作规程及发展历程,继电器,工作原理,分类,负