首页 / 行业
《AEM》:用于快充钠离子电池的多电子反应阴极!
2023-03-23 10:48:00
减少碳排放是建设更绿色未来的世界性强制性任务。使用间歇性能源发电(太阳能/风能)的一种方法迫切需要一种可靠且具有成本效益的电化学储能技术。锂离子电池(LIB)改变了现代生活,使移动通信和电动汽车成为可能。它们是最普遍的储能设备,但由于锂资源有限,往往存在潜在的争端,因此它们并不完全适合可持续发展。钠超离子导体(NASICON)结构的磷酸盐正在成为钠离子电池阴极的后起之秀。然而,由于活性氧化还原偶联有限和固有的电子电导率低,它们通常具有相对较低的容量。
来自伦敦大学学院的学者基于简单的溶胶-凝胶法设计了一种还原石墨烯氧化物负载的Na3Cr0.5V1.5(PO4)3材料(VC/C-G),它具有高能量密度的Na+存储性能和快速充电特性。具体来说,所设计的VC/C-G在0.2C下可以达到≈470W h kg−1的高能量密度,比容量为176mAhg−1,这证实了基于完全激活的V5+/V4+,V4+/V3+,V3+/V2+氧化还原对的三电子反应。此外,仅需≈11min即可达到80%的SOC。本文通过恒电流间歇滴定技术(GITT)、循环伏安法(CV)和伪电容计算,对其优异的电化学性能进行了分析。此外,还用X-射线衍射仪(XRD)和X-射线光电子能谱(XPS)分析了样品的结构演化和电荷补偿机制。密度泛函理论计算表明,薄膜的能隙较窄(为1.41 eV),钠离子扩散能垒较低(为0.194 eV),这解释了铬的部分引入激活了多电子反应。这项工作为高性能SIB的多电子转移和快速充电阴极设计提供了一种通用策略。相关文章以“Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries”标题发表在Advanced Energy Materials。
论文链接:
https://doi.org/10.1002/aenm.202201065
图 1.VC / C-G样品的表征。a) XRD Rietveld 反射结果和 b) 晶体结构图解。c,d) 透射电镜和 e) HRTEM 图像(插图:FFT 图像)。f) SAED 图像。g) EDS 映射图像。
图 2.电化学性能。a)0.2 C的VC/C-G。b) CV 值时的充电/放电曲线。c) 速率性能和 d) 相应的充电/放电属性。e) 拉贡点图。f) VC/C-G与各种材料在规格容量、平均电位和能量密度方面的比较。在 g) 5 C 和 h) 20 C 下的循环性能。
图 3.动力学性能。a) GITT, DNa+, 和 VC/C-G 的过电位。b)从 0.1 到 1.0 mV s−1的CV 曲线。c) 相应的 b 值。d) VC/C-G 的电容贡献。e) 0.1–1.0 mV s−1的 CV 曲线,f) 相应的 b 值和 g)VC/C 的电容贡献。
图 4.a) 原位XRD轮廓图和b)循环时Na3Cr0.5V1.5(PO4)3的线图。c) 晶格参数的相应变化。d)Na3Cr0.5V1.5(PO4)3在不同充电状态下的晶体结构示意图。
图 5. Na3Cr0.5V1.5(PO4)3的DFT计算。a) 凸壳相图和 b) 计算出的电压范围。c) 全部和部分DOS。d) 钠离子的BV图。e)钠离子扩散途径和f)相应的迁移能量势垒。
图 6.快速充电性能。a) VC/C-G 在不同充电速率下的充放电曲线,其放电速率为 1 C。b) VC/C-G 和 c) VC/C 的SOC 时间图。d) VC/C-G的dQ/dV 图。e) 5 C- 1 C 时的快速充电循环性能。f) 不同充电速率下的容量保持率。g)在5C充电速率下VC/C-G的非原位X射线衍射结果和h)相应的放大图。
综上所述,本文成功地设计了一种还原石墨烯氧化物负载的NASICON-Na3Cr0.5V1.5(PO4)3。作为SIB的阴极,该材料表现出了基于完全激活的V5+/V4+、V4+/V3+、V3+/V2+氧化还原对的超快、超稳定的Na+存储性能,并具有良好的快速充电性能。具体来说,所设计的材料可以达到≈470W h kg−1的高能量密度,在0.2C下的可逆容量为176mAhg−1(对应于理论值),出色的倍率性能高达50C,即使在20C下也可以实现1000次循环的良好循环性能,并且只需要很短的≈11min就可以达到80%的SOC。此外,原位X射线衍射结果表明,Na+的储存过程是固溶体和两相反应相结合的过程。密度泛函理论计算表明,样品禁带宽度较窄,禁带宽度为1.41 eV,而且扩散能垒较低(为0.194 eV),这是由于部分引入铬而引起的多电子反应。本文的工作为实现高性能SIB的多电子阴极设计提供了一种通用策略。
审核编辑 :李倩
最新内容
手机 |
相关内容
位移传感器结构类型及工作原理与应
位移传感器结构类型及工作原理与应用,工作原理,类型,结构,位移传感器,常见,效应,FDV302P位移传感器是一种用于测量物体位移或位置的华为公开半导体芯片专利:可提高三维
华为公开半导体芯片专利:可提高三维存储器的存储密度,专利,存储密度,存储器,芯片,存储单元,调整,华为是全球领先的信息与通信技术解加特兰毫米波雷达SoC芯片赋能室内
加特兰毫米波雷达SoC芯片赋能室内安防新应用,毫米波雷达,芯片,用于,稳定性,目标,感知,室内安防是一个重要的领域,随着技术的进步和人台积电1.4nm,有了新进展
台积电1.4nm,有了新进展,台积电,行业,需求,竞争力,支持,芯片,近日,台积电(TSMC)宣布将探索1.4纳米技术,这是一项令人振奋的举措,将有望为E单相滤波器:从基础到应用的全面解读
单相滤波器:从基础到应用的全面解读,滤波器,能和,噪声,选择,信号,工作原理,TVP5146PFP单相滤波器是一种用于去除电源信号中的杂波和聊聊芯片中的负压产生机理及其应用
聊聊芯片中的负压产生机理及其应用,芯片,细胞,用于,测量,生物,结构,芯片中的负压是指在芯片内部产生的负压环境。在某些应用中,负压美光低功耗内存解决方案助力高通第
美光低功耗内存解决方案助力高通第二代骁龙XR2平台,解决方案,助力,低功耗,内存,美光,第二代,随着虚拟现实(VR)和增强现实(AR)技术的迅猛不只是芯片 看看传感器技术我们离
不只是芯片 看看传感器技术我们离世界顶级有多远,传感器,芯片,位置,测量,交通,用于,传感器技术是现代科技中至关重要的一部分,它们被