首页 / 行业
微软发布Visual ChatGPT:视觉模型加持ChatGPT实现丝滑聊天
2023-03-16 10:35:00
近来,AI领域迎来各个领域的大突破,ChatGPT展现出强大的语言问答能力和推理能力,然而作为一个自然语言模型,它无法处理视觉信息。
与此同时,视觉基础模型如Visual Transformer或者Stable Diffusion等,则展现出强大的视觉理解和生成能力。
Visual Transformer将ChatGPT作为逻辑处理中心,集成若干视觉基础模型,从而达到如下效果:
视觉聊天系统Visual ChatGPT可以接收和发送文本和图像
提供复杂的视觉问答,或者视觉编辑指令,可以通过多步推理调用工具来解决复杂视觉任务
可以提供反馈,总结答案,主动询问模糊的指令等
这个工作开启了ChatGPT借助视觉基础模型作为工具,进行视觉任务处理的研究方向。
论文链接:
https://arxiv.org/abs/2303.04671
开源代码:
https://github.com/microsoft/visual-chatgpt
论文作者:
Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, Nan Duan
机构:微软亚洲研究院
模型效果
工作流程
记对话,第i轮的回复,是通过若干次思考调用工具的结果来最终总结出来的。我们记第i轮对话中,第j次的工具调用中间答案记作,那么
其中,是全局原则,是各个视觉基础模型,是历史会话记忆,是这一轮的用户输入,是这轮对话里思考和的历史,是中间答案,是prompt manager,用于把上面各个功能转化成合理的文本prompt,从而可以交给ChatGPT进行处理。以下图为例进行讲解:
对于用户输入,添加于全局原则prompt,工具描述prompt,历史会话prompt之后,送给ChatGPT进行逻辑推理(Use VFM?)得到推理结果(就是这一次得到的GPT文本输出)。经过正则匹配进行分析,如果工具调用结束,则直接提取总结输出作为最终回复,如果是需要继续调用工具,则将提取到的工具名称、工作参数,输入视觉基础模型,从而得到,置于思考历史中,进行下一轮推理。或者说喂给GPT的内容为:
第一次问答里,第一个API:
第一次问答里,第二个API:
第一次问答里,第三个API:
第二次问答里,第一个API:
第二次问答里,第二个API:
得到GPT的输出后,正则匹配进行工具的判断和解析,最终决定流程。API调用历史在每次回答后清空,其中只有最后总结性的回复被记录进入对话历史
细节描述
: 系统原则的提示符,“Visual ChatGPT是一个可以处理广泛语言和视觉任务的助手,xxxxxx”。在这个prompt的部分,以下内容被强调:Visual ChatGPT的角色,可以访问且需要尽可能使用视觉基础模型,要对文件名称非常敏感不可以捏造,可以且必须遵循严格的Chain-of-Thought思考链的格式进行思考(不然正则匹配不出来是否使用函数和函数名称参数),可靠性等描述。
: 对每个视觉基础模型的描述,包含工具名称,使用方法,输入输出格式,实例
: 用户的输入会被改写,用来理解图片和强制GPT思考
:对输出的处理,链式的文件命名,"imaga/{Name}_{Operation}_{Prev_Name}_{Org_Name}.webp",强制修改GPT内容,让GPT降低思考难度,在指代不清时二次询问用户等。
Case Study
论文分析了在各个模块,如果prompt manager设计不到位,会各自出现什么问题:
在中,如果不强调对图片文件名的敏感,可能会发生指代错误。如果不强调思考链的格式严格,可能正则匹配匹不上。如果不强调可靠性,不要基于文本上下文脑补,可能会出现不读图片直接回答的情况。如果不强调可以链式使用工具,则可能出现一口吃个大胖子而不能一步一步思考的情况。
类似的,对于工具包的描述,也应该对名称、功能、输入输出格式进行严格的设计。其中,for example进行举例影响不大,只要前面描述足够清楚,GPT可以理解,可以删掉保存token长度。
对于用户输入和工具包输出的后处理,如图。比较神奇的是,右上角的举例里,用ChatGPT自己的口吻来说一些原则(从而让ChatGPT以为是它自己说的,然后顺着说),以及直接让ChatGPT说到"Thought: Do I need a tool"继续生成,能强制进入思考链,从而大幅度降低思考难度。左下角的举例里,对于链式的文件命名,问Visual ChatGPT能不能总结出来文件命名原则,基本总结正确,这说明此种命名方法,确实可以帮助Visual ChatGPT理解文件的内容和依赖关系,生成路径。
有意义的启发
开启了ChatGPT处理视觉任务的新大门
NLP --> Natural Language PhotoShop,自然语言文本描述下的图片创作编辑和问答
可以通过系统设计和工具包设计的Prompt,做到无监督的工具调用,类似于zero-shot的toolformer
ChatGPT本身对仿真场景的能力很强,也读过图片路径和函数关系,从而善于使用基础视觉模型
Prompt很重要,作为纯语言模型,前文说它是啥他就仿照啥,除了细致的要求,一定要多夸一夸他,是能力很强的处理模型,那它顺着说,能力才会真的强
Visual ChatGPT本身是一个语言模型,所谓的两方多轮对话只是一个Human: AI: 的多轮特殊形式前文的继续生产,所以,完全可以强行给前文AI: 让ai自己说一些东西出来,是它信了是它自己说的,这能够极大的降低生成难度。这在本篇论文里对几个场景的帮助很大。例如,用户输入图片后,改写为“Human: 上传了一张图片,描述为:{}。注意,这里的描述是帮助你理解图片的,你不能基于它幻想而不调用工具。如果你理解了,就恢复收到。AI:收到。”注意,这里AI回复的收到,并不是真的GPT的生成内容,而是我们强行写入进dialogue history memory的,而且可以发现,AI真的相信了。另外一个点是,在用户的输入后面,挨着的应该是GPT自己的思考内容,如果我们借它的口,自己说“推理信息仅自己可见,需要在最后总结的时候把重要信息复述给读者”,效果比在最前文的prompt里效果好很多,可能是因为距离的原因,也可能是AI自己说出来的原因。另外,可以直接给到"Thought: do i need a tool?"去让GPT继续生成,从而一定进入推理链,可以匹配到远处描述思维链格式的prompt内容,极大的降低思考难度。
外网评价
审核编辑 :李倩
最新内容
手机 |
相关内容
半导体主控技术:驱动自动驾驶革命的
半导体主控技术:驱动自动驾驶革命的引擎,自动驾驶,交通,自动驾驶系统,数据,车辆,自动,随着科技的不断进步,自动驾驶技术已经成为现实晶振在激光雷达系统中的作用
晶振在激光雷达系统中的作用,作用,系统,激光雷达,晶振,可靠性,选择,激光雷达(Lidar)是一种利用激光进行测距的技术,广泛应用于自动驾驶Arbe 4D成像雷达以高分辨率雷达技
Arbe 4D成像雷达以高分辨率雷达技术和先进处理技术消除“幽灵刹车”问题,刹车,成像,分辨率,系统,目标,数据,Arbe 4D成像雷达是一种英伟达芯片开发过程引入聊天机器人
英伟达芯片开发过程引入聊天机器人,扩展更多AI应用,聊天机器人,扩展,芯片,英伟达,开发过程,调试,英伟达是一家全球领先的半导体公司,浅析动力电池熔断器的基础知识及选
浅析动力电池熔断器的基础知识及选型,动力电池,时切,系统安全,作用,产品,系统,BA4558F-E2动力电池熔断器是用于保护动力电池系统安创造多样信号的万能工具:函数/任意
创造多样信号的万能工具:函数/任意波形发生器,函数,波形,信号,工具,创造,时钟,函数/任意波形发生器是一种用于产生各种形状和频率的高精度3D视觉技术,助力工业机器人实
高精度3D视觉技术,助力工业机器人实现汽车零部件高效上下料,工业机器人,助力,视觉,高精度,3D,算法,高精度3D视觉技术在工业机器人上智能家居中的MEMS传感器
智能家居中的MEMS传感器,传感器,智能家居,控制,用户,温度传感器,系统,MEMS(微机电系统)传感器是智能家居中的关键技术之一。它们是一