首页 / 行业
如何使用人工智能和组织高级分析
2022-12-16 14:33:00
构建人工智能(AI)驱动的组织
远望智库研究员 亿竹 编译
人工智能正在重塑商业。现在支持人工智能的技术正在快速发展,麦肯锡估计,人工智能将在未来十年为全球经济增加13万亿美元。然而,尽管有人工智能的承诺,许多组织的人工智能努力仍有不足之处。。
为什么实施这项改变游戏规则的技术进展缓慢?麦肯锡的人工智能专家得出结论,根本问题是未能重新构建组织。
一.解决方案和领导力需求
光有尖端技术和人才是不够的。公司必须打破阻碍人工智能的组织和文化障碍。领导者必须传达人工智能计划的紧迫性及其对所有人的好处;在采用上的花费至少和在技术上的支出一样多;根据公司的人工智能成熟度、业务复杂性和创新步伐组织人工智能工作;并为每个人投资AI教育。
人工智能正在重塑商业——尽管没有许多人想象的那么快。诚然,人工智能现在正在指导从农作物收成到银行贷款的一切决策,而完全自动化的客户服务等曾经不切实际的前景即将出现。使人工智能成为可能的技术,比如开发平台和巨大的处理能力和数据存储正在快速发展,而且变得越来越便宜。公司利用人工智能的时机似乎已经成熟。事实上,我们估计人工智能将在未来十年里为全球经济增加13万亿美元。
然而,尽管人工智能前景看好,但许多组织在这方面的努力还不够。麦肯锡调查了数千名高管,了解他们的公司如何使用人工智能和组织高级分析,数据显示,只有8%的公司从事支持广泛采用人工智能的核心实践。大多数公司只进行了临时试点,或者只在单一业务流程中应用人工智能
为什么进展缓慢?这在最高层次上反映了组织重组的失败。在调查和与数百名客户的合作中,我们看到人工智能计划面临着巨大的文化和组织障碍。但我们也看到,一开始就采取措施打破这些障碍的领导人能够有效抓住AI的机会。
二.转变领导者思维模式
领导者犯的最大错误之一是将人工智能视为一种即插即用的技术,可以立即获得回报。他们决定启动并运行几个项目,开始在数据基础设施、人工智能软件工具、数据专业知识和模型开发方面投资数百万美元。一些试点项目设法在一些组织中勉强维持小幅收益。但几个月或几年过去了,却没有带来高管们预期的重大效果。公司很难从试点项目转向全公司范围的项目,也很难从关注离散的业务问题(如改善客户细分)转向大的业务挑战(如优化整个客户旅程)。
领导者也经常过于狭隘地考虑人工智能的要求。虽然尖端技术和人才肯定是需要的,但调整公司的文化、结构和工作方式以支持人工智能的广泛采用也同样重要。但在大多数并非天生数字化的企业,传统的思维模式和工作方式与人工智能所需的背道而驰。
为了扩大人工智能的规模,公司必须进行三次转变:
1.从孤立的工作到跨学科的合作
当人工智能由混合了技能和观点的跨职能团队开发时,它会产生最大的影响。让业务和运营人员与分析专家并肩工作将确保计划解决广泛的组织优先事项,而不仅仅是孤立的业务问题。不同的团队也可以考虑新应用程序可能需要的操作变化——他们更有可能认识到,比如说,引入预测维护需求的算法应该伴随着维护工作流的彻底改革。当开发团队让最终用户参与应用程序的设计时,应用程序被采用的机会就会大大增加。
2.从基于经验、领导者驱动的决策到一线数据驱动的决策
当广泛采用人工智能时,上下层级的员工将通过算法的建议来增强自己的判断和直觉,以得出比人类或机器自己更好的答案。但要让这种方法发挥作用,所有层次的人都必须相信算法的建议,并感到有权做出决定——这意味着放弃传统的自上而下的方法。如果员工在采取行动前必须咨询上级,这将抑制人工智能的使用。
当一个组织用一个新的人工智能系统取代了复杂的人工方式来安排事件时,决策过程发生了巨大的变化。从历史上看,该公司的活动策划人使用彩色标签、别针和贴纸来跟踪冲突、参与者的偏好和其他考虑因素。他们经常依靠直觉和高级经理的意见来做决定,高级经理也是凭直觉行事的。新的AI系统快速分析了大量的日程安排排列,首先使用一种算法将数亿个选项提取到数百万个场景中,然后使用另一种算法将这数百万个选项浓缩到数百个,为每个参与者排列最佳日程。经验丰富的规划者将他们的在数据支持下做出最终决策的专业知识,无需从领导那里获得意见。规划者很容易采用这个工具,信任它的输出,因为他们帮助设置了其参数和约束,并且知道他们自己会做出最后的决定。
3.从僵化和规避风险到敏捷、实验性和适应性强
组织必须摆脱这样的思维模式,即一个想法需要完全成熟,或者一个业务工具在部署之前必须具备所有的功能。在第一次迭代中,人工智能应用程序很少拥有所有想要的功能。测试和学习的心态将把错误重新定义为发现的来源,减少对失败的恐惧。得到用户早期的反馈并将其整合到下一个版本中,将允许公司在小问题变成代价高昂的问题之前纠正它们。开发将会加快,使小型人工智能团队能够在几周内而不是几个月内创造出最低限度的可行产品。
这种根本性的转变来之不易。要求领导者准备、激励和装备员工来做出改变。但领导人首先必须做好准备。我们已经看到了一次又一次的失败,原因是高级管理人员缺乏对人工智能的基础理解。
三.为AI成功做好准备
为了让员工参与进来,为人工智能的成功实施铺平道路,领导者应该尽早关注以下几项任务:
1. 解释原因。一个引人注目的故事有助于组织理解变革计划的紧迫性,以及所有人将如何从中受益。这对于人工智能项目来说尤其重要,因为担心人工智能会抢走工作岗位会增加员工对AI的抵制。
领导者必须提供一个愿景,将每个人团结在一个共同的目标周围。员工必须理解为什么人工智能对企业很重要,以及他们将如何适应一种新的、以人工智能为导向的文化。他们尤其需要得到保证人工智能将增强而不是减少甚至消除他们的角色。(研究表明,大多数工人将需要适应使用人工智能,而不是被人工智能取代。)
在大多数并非天生数字化的公司,心态与人工智能所需的心态背道而驰。当一家大型零售集团希望让员工支持其人工智能战略时,管理层将其视为生存之道。领导人描述了数字零售商构成的威胁,以及人工智能如何通过提高公司的运营效率和响应能力来帮助抵御这种威胁。发出战斗的号召生存,管理层强调了员工必须发挥的关键作用。在分享他们的愿景时,该公司的领导们把焦点放在了员工身上曾经试用过一种新的人工智能工具,帮助他们优化商店的产品组合,增加收入。这激发了其他员工想象人工智能如何增强和提升他们的业绩。
2.预测变革的独特障碍。一些障碍,比如员工对过时的恐惧,在整个组织中都很常见。但是一个公司的文化也可能有导致抵制的显著特征。例如,如果一家公司的公共关系经理以能适应客户需求而自豪,他们可能会拒绝这种机器可以更好地了解客户想要什么的想法,并忽略人工智能工具定制的产品推荐。大型组织中的经理人认为其地位是基于他们监管的人数,他们可能会反对人工智能可能允许的决策分散或减少报告。
在其他情况下,孤立的流程会抑制人工智能的广泛采用。例如,按职能或业务单位分配预算的组织可能很难组建跨学科的敏捷团队。通过回顾过去的变革举措如何克服障碍,可以找到一些解决方案。其他可能涉及将人工智能倡议与看起来像障碍的文化价值观结合起来。例如,在一家非常重视关系银行业务的金融机构,领导们强调了人工智能加强与客户联系的能力。该银行为公关关系经理制作了一本小册子,展示如何将其专业知识和技能与人工智能量身定制的产品推荐相结合,以改善客户体验,增加收入和利润。人工智能采用计划还包括通过使用新工具来推动销售转化的竞赛;获胜者的成就在CEO发给员工的每月简讯中展示。
了解变革的障碍不仅可以告知领导者如何与员工沟通,还可以帮助他们确定在哪里投资,什么样的人工智能计划最可行,应该提供什么样的培训,什么样的激励措施可能是必要的等等。
3. 对集成和采用的预算与对技术的预算一样多。在我们一项调查中,近90%参与成功扩展实践的公司将超过一半的分析预算用于推动采用的活动,如工作流重新设计、沟通和培训。剩下的公司中只有23%投入了类似的资源。
公共关系经理可能会拒绝AI机器知道客户想要什么的想法。以一家电信提供商为例,该提供商在其呼叫中心推出了一项新的人工智能驱动的客户维系计划。该公司同时投资于人工智能模型开发和帮助该中心的员工过渡到新方法。他们不只是对取消服务的电话做出反应,他们会主动联系有流失风险的客户,就他们可能接受的新提议向他们提供人工智能生成的建议。员工们接受了关闭企业所需销售技能的培训和在职指导。教练和经理监听他们的电话,给他们个性化的反馈,并不断更新培训材料和电话脚本。由于这些协调努力,新计划减少了10%的客户流失。
4.平衡可行性、时间投资和价值。追求过于难以实施或需要一年以上才能启动的计划可能会破坏当前和未来的人工智能项目。
组织不必只关注速赢;他们应该制定一系列具有不同时间范围的举措。不需要人工干预的自动化流程,如人工智能辅助的欺诈检测,可以在几个月内获得回报,而需要人工参与的项目,如人工智能支持的客户服务,可能需要更长的时间才能获得回报。优先次序的确定应以长期(通常为三年)观点为基础,并考虑到如何将不同时限的几项举措结合起来价值最大化。例如,实现足够详细的客户视图,以允许AI微细分,一个公司可能需要建立一些销售和营销计划。有些服务,比如有针对性的服务,可能在几个月内就能产生价值,而整套服务可能需要12到18个月才能发挥全部作用。
一家亚太零售商认为,除非该公司翻新其所有商店,为每一类商品重新分配其空间,否则优化占地面积和库存的人工智能计划不会产生完整的价值。经过一番辩论后,公司的高管们决定,这个项目对未来的盈利能力非常重要,可以继续进行,但必须将其一分为二。第一部分开发了一个人工智能工具,为商店经理推荐一些在商店里会卖得很好的增量商品。该工具仅提供了预期总回报的一小部分,但经理们可以立即将新商品带入商店,展示项目的好处,并为未来多年的发展树立热情。
四.规模化组织
关于人工智能和分析能力应该存在于组织中的什么地方,有很多争论。通常领导者会简单地问:“什么样的组织模式最有效?”然后,在听到其他公司的成功经验后,做三件事之一:将大部分人工智能和分析能力整合到一个中央“枢纽”内;分散后并将其主要嵌入业务部门(“辐条”);或者将它们分布在两者之间,使用混合(“轮毂辐条”)模型。我们发现,在让人工智能达到规模方面,这些模型中没有一个总是比其他模型更好;正确的选择取决于公司的个人情况。
拥有良好扩展实践的公司将一半的分析预算用于采用。以我们合作过的两家大型金融机构为例。第一家公司将其人工智能和分析团队整合在一个中心枢纽,所有分析人员向首席数据和分析官报告,并被部署到根据需要确定业务单位。第二家公司分散了几乎所有的分析人才,让团队驻留在业务部门并向其报告。两家公司都以行业顶端的规模开发了人工智能;第二个组织在短短两年内从30个盈利的人工智能项目发展到200个。两者都是在考虑了各自组织的结构、能力、战略和独特特征后选择其模式的。
1.枢纽(Hub)
少数职责最好由中心处理,并由首席分析官或首席数据官领导。其中包括数据治理、人工智能招聘和培训战略,以及与数据和人工智能服务和软件的第三方提供商合作。中心应该培养AI人才,创建AI专家可以分享最佳实践的社区,并为整个组织的人工智能开发制定流程。我们的研究表明,已经大规模实施人工智能的公司拥有中心的可能性是同行的三倍,并有2.5倍的可能性采用一个清晰的方法来创建模型,解释见解,并部署新的人工智能能力。
枢纽还应该负责与人工智能相关的系统和标准。这些应该由公司倡议的需要驱动,这意味着它们应该逐步发展,而不是在商业案例确定之前一下子建立起来。我们已经看到许多组织浪费了大量的时间和金钱,在公司范围内的数据清理和数据集成项目上预先花费了数亿美元,却中途放弃了这些努力,几乎没有或根本没有收益。
相比之下,当一家欧洲银行发现相互冲突的数据管理策略阻碍了其新人工智能工具的开发时,它采取了一种较慢的方法,制定了一项统一其数据架构和未来四年的管理,因为它为其人工智能转型建立了各种商业案例。这一多阶段计划还包括组织重新设计和修订人才战略,预计每年的影响将超过9亿美元。
2.辐条(Spoke)
另外一些责任几乎是由辐条承担,因为它们最接近那些使用人工智能系统的人。其中包括与采用相关的任务,包括最终用户培训、工作流程重新设计、激励计划、绩效管理和影响跟踪。
为了鼓励客户接受其智能互联设备提供的人工智能服务,一家制造商的销售和服务机构成立了一个“特警队(SWAT)”,支持客户使用产品并制定了一个定价计划,以促进采用。这样的工作显然是辐条的职权范围,不能委托给分析中心。
人工智能支持的公司在枢纽和辐条之间划分关键角色。一些任务总是由中心拥有,而辐条总是拥有执行。其余的工作属于灰色地带,公司的个人特征决定了它应该在哪里完成。
3.灰色地带
就责任而言,成功的人工智能转型中的许多工作都陷入了灰色地带。关键任务-为人工智能项目设定方向,分析它们将解决的问题,构建算法,设计工具,与最终用户一起测试它们,管理变化以及创建支持IT基础设施——可以由中心或分支拥有,由两者共享,或与IT共享。
决定一个组织内的责任应该在哪里并不是一门精确的科学,但它应该受到三个因素的影响:
人工智能能力的成熟。当一家公司处于人工智能之旅的早期时,分析高管、数据科学家、数据工程师、用户界面设计师、以图形方式解释分析结果的可视化专家等坐在一个中心内并根据需要部署到辐条上通常是有意义的。这些参与者通过合作,可以建立公司的核心人工智能资产和能力,如通用分析工具、数据流程和交付方法。但是随着时间流逝和流程变得标准化,这些专家可以同样(或更)有效地驻留在辐条内。
商业模式的复杂性。人工智能工具支持的业务功能、业务线或地理位置越多,就越需要建立人工智能专家协会(比如数据科学家或设计师协会)。拥有复杂业务的公司通常会将这些行业协会整合到中心,然后根据需要将它们分配到业务单位、职能部门或地理位置。
所需技术创新的速度和水平。当需要快速创新时,一些公司将更多的灰色区域战略和能力建设放在中心,这样他们就可以监控行业和技术。
让我们回到前面讨论的两家金融机构。两者都面临着需要快速创新的竞争压力。然而,他们的分析成熟度和业务复杂性不同。
将其分析团队置于其中心的机构拥有更复杂的商业模式和相对较低的人工智能成熟度。其现有的人工智能专业知识主要是在风险管理方面。通过将其数据科学家、工程师和许多其他灰色地带专家集中在该中心,该公司确保了所有业务部门和职能部门都可以在需要时快速获得重要的专业知识。
第二家金融机构的商业模式要简单得多,只专注于较少的金融服务。这家银行也有丰富的人工智能经验和专业知识。因此,它能够分散其人工智能人才,将许多灰色地带分析、战略和技术专家嵌入业务部门。
正如这些案例所表明的,一些技巧参与了决定责任应该存在于哪里。每个组织都有独特的能力和竞争压力,这三个关键因素必须整体考虑,而不是单独考虑。例如,一个组织可能有很高的业务复杂性,需要非常快速的创新(建议它应该将更多的责任转移到中心),但也有非常成熟的人工智能能力(建议它应该将它们转移到辐条)。它的领导人必须权衡所有三个因素的相对重要性,以决定在权衡之下将人才最有效地部署到哪里。人才等级(人工智能成熟度的要素)通常对决策有很大的影响。组织是否有足够的数据专家,如果将他们永久地转移到辐条上,它仍然可以满足所有业务单位、职能部门和地理位置的需求?如果没有,将他们安置在中心并共享他们可能会更好整个组织。
4.监督和执行
虽然人工智能和分析职责的分布因组织而异,但那些扩大人工智能规模的组织有两个共同点:
(1)由业务、IT和分析领导者组成的执政联盟。完全集成AI是一个漫长的旅程。建立一个联合工作团队来监督它将确保这三个职能部门合作并分担责任,无论角色和责任如何划分。这个小组通常由首席分析官召集,也有助于为人工智能计划创造动力,尤其是在早期。
(2)基于任务的执行团队。扩大人工智能规模的组织在辐条内建立跨学科团队的可能性是其他人的两倍。这些团队汇集了不同的观点,并征求前线的员工意见构建、部署和监控新的人工智能能力。这些团队通常在每一项倡议,并从中心和辐条中汲取技能。每个人通常包括负责新的人工智能工具成功的项目经理(“产品所有者”)、翻译、数据架构师、工程师和科学家、设计师,有些技巧涉及到决定人工智能的责任和角色应该在哪里。
五.加强变革
大多数人工智能转换需要18到36个月才能完成,有些甚至需要5年。为了防止他们失去动力,领导者需要做四件事:
1.言行一致
榜样是必不可少的。首先,领导者可以通过参加学院培训来展示他们对人工智能的承诺。
但是他们也必须积极鼓励新的工作方式。人工智能需要实验,早期的迭代往往不会按计划进行。当这种情况发生时,领导人应该强调从试验者身上学到了什么。这将有助于鼓励适当的承担风险。
我们见过的最有效的榜样是谦逊的。他们提出问题,强调不同观点的价值。他们定期与员工会面讨论数据,询问诸如“我们多久正确一次?”和“我们有什么数据来支持今天的决定?”
2.让企业负起责任
看到分析人员成为人工智能产品的所有者并不罕见。 然而,因为分析只是解决业务问题的一种手段,所以业务部门必须领导项目并对项目的成功负责。所有权应该分配给相关业务的人,他们应该规划角色并从头到尾指导项目。有时,组织在不同的点上分配不同的所有者开发生命周期(例如,用于价值证明、部署和扩展)。这也是一个错误,因为它可能会导致松散的结局或错失机会。
捕捉所有利益相关者的项目绩效指标的记分卡是协调分析和业务团队目标的绝佳方式。例如,一家航空公司使用共享记分卡来衡量优化定价和预订的人工智能解决方案的采用率、充分发挥能力的速度和业务成果。
比较有和没有人工智能的决策结果可以鼓励员工使用它。例如,在一家大宗商品公司,交易员了解到,他们的非人工智能支持的预测通常只有一半是正确的——不比猜测好多少。这一发现使他们对人工智能工具更加开放,以改善预测。
业务部门必须领导人工智能项目,并对其成功负责。监控实施的团队可以根据需要纠正路线。在一家北美零售商,一名人工智能项目所有者看到商店经理努力将试点的输出纳入他们对商店业绩结果的跟踪。人工智能的用户界面很难导航,生成的人工智能见解没有集成到经理们每天决策所依赖的仪表板中。为了解决这个问题,AI团队简化了界面并重新配置了输出,以便新的数据流出现在仪表板中。
3.为变革提供激励
认可能激励员工长期工作。专业零售商的CEO开始开会聚焦于帮助公司人工智能项目取得成功的员工(如产品经理、数据科学家或一线员工)。在这家大型零售集团,首席执行官为参与人工智能转型的顶级员工创造了新的角色。 例如,他提拔了在试点期间帮助测试优化解决方案的品类经理,以领导其在各商店的推广——明显展示了拥抱人工智能可能产生的职业影响。
最后,公司必须检查员工的激励是否真正与人工智能的使用相一致。但情况并非如此,实体零售商开发了一种人工智能模型来优化折扣定价,以便清理旧库存。该模型显示,有时处理旧库存比打折出售更有利可图,但商店员工有动力出售所有东西,即使折扣很大。因为人工智能的建议与他们标准的、有回报的实践相矛盾,员工们开始怀疑这个工具并忽略它。由于他们的销售激励也与合同密切相关,不能轻易改变,该组织最终更新了人工智能模型,以识别利润和激励之间的权衡,这有助于推动用户采用和提高底线。
六.结论
人工智能中促进规模的行为创造了一个良性循环。从职能团队到跨学科团队的转变最初汇集了构建有效工具所需的不同技能和观点以及用户输入。随着时间的推移,整个组织的员工都会吸收新的协作实践。随着他们与其他职能部门和地区的同事更加密切地合作,员工开始有更大的想法——他们从试图解决分散的问题转向完全重新构想业务和运营模式。随着组织的其他部分开始采用成功地推动了试验。
随着人工智能工具在整个组织中传播,那些最接近行动的人变得越来越能够做出曾经由他们上司做出的决定,从而扁平化组织层级。这鼓励了进一步的合作和更大的思考。
人工智能用于增强决策的方式不断扩大。新的应用程序将在工作流程、角色和文化方面产生根本性的、有时是困难的变化,领导者需要小心翼翼地引导他们的组织。擅长在整个组织中实施人工智能的公司会发现,在这个世界上,人类和机器一起工作比人类或机器单独工作更有优势。
编译自: Building the AI-Powered Organization | EU Think Tank https://euthinktank.com/innovation/building-the-ai-powered-organization/
最新内容
手机 |
相关内容
所有遥不可及,终因AI触手可及
所有遥不可及,终因AI触手可及,出行,平台,无人驾驶汽车,导致,人工智能,学习,人类历史上,有许多事物曾被认为是遥不可及的,然而随着科技面向6G+AI,鹏城云脑的演进
面向6G+AI,鹏城云脑的演进,鹏城,人工智能,数据存储,脑可,智能终端,智能,随着科技的不断进步,人们的生活方式也在不断改变。6G+AI(人工Transphorm推出TOLL封装FET,将氮化
Transphorm推出TOLL封装FET,将氮化镓定位为支持高功率能耗人工智能应用的最佳器件,支持,定位,推出,高功率,封装,器件,加利福尼亚州戈芯朋微:服务器配套系列芯片已通过客
芯朋微:服务器配套系列芯片已通过客户验证 可应用于AI服务器,服务器,客户,芯片,验证,人工智能,公司,芯朋微是一家专注于人工智能芯片用于大容量数据传输的新型光子芯片
用于大容量数据传输的新型光子芯片,芯片,数据传输,用于,信号,前景,瓶颈,随着信息技术的快速发展,大容量数据传输的需求也越来越迫切3nm,手机芯片的全新战争
3nm,手机芯片的全新战争,全新,功耗,人工智能,提升,中国,芯片,随着移动通信技术的迅猛发展,手机成为了现代人生活中不可或缺的一部分。数据中心短缺:人工智能未来的致命阻
数据中心短缺:人工智能未来的致命阻碍?,人工智能,数据中心,采用,需求,算法,存储技术,数据中心短缺是人工智能未来发展的一个重要致命忆阻器存算一体芯片新突破!有望促进
忆阻器存算一体芯片新突破!有望促进人工智能、自动驾驶等领域发展,芯片,自动驾驶,人工智能,模拟,神经网络,计算,忆阻器存算一体芯片