首页 / 行业
中国学者利用 AI技术准确地对 IgA肾病患者的预后风险进行预测
2019-05-27 13:52:00
IgA肾病的长期预后风险预测一直是医学界的难题。近日,中国学者在肾脏病顶级期刊《美国肾脏病杂志》(AJKD) 上发表论文,介绍了如何利用AI技术,改善对IgA肾病的长期预后风险预测。这是全球第一篇发表在肾脏病顶级期刊上的AI疾病预测论文。
中国大约有1.2亿慢性肾病(GKD)患者。其中有一种最常见的肾病,它的病因尚不完全清楚,且其远期预后非常不理想。它就是 IgA 肾病(IgA nephropathy,IgAN),是全球范围内发病率最高的原发性肾小球疾病之一,在亚洲人群中发病率尤高。
IgA肾病的远期预后不佳,10‑25 年内 30‑40% 的患者会进入终末期肾病(肾衰竭)。终末期肾病患者通常需要进行透析或肾移植治疗,人均治疗花费10-15万元/年,这给个人、家庭和社会带来了沉重的负担。因此,如何准确地对IgA肾病患者的预后风险进行预测,对于指导患者的个体化预防、治疗和管理,以及相关临床研究具有重要的意义。
近日,国家肾脏疾病临床医学研究中心(东部战区总医院)、平安医疗科技、IBM中国研究院联合在肾脏病顶级期刊《美国肾脏病杂志》(AJKD) 上发表论文《IgA肾病的肾脏终点预测和风险分层》,介绍了如何利用 AI 技术,改善对IgA肾病的长期预后风险预测。陈听雨、李响、李映雪、夏尔玉、秦勇、梁少姗、徐峰、梁丹丹、曾彩虹、刘志红等人是论文的贡献者。
研究人员将 AI 算法与统计分析方法相结合,建立了一套精准、可解释、临床实用的 IgA 肾病患者预后风险预测系统。据悉,这是全球第一篇发表在肾脏病顶级期刊上的 AI 疾病预测论文。
长期随访患者数据,机器学习方法构建模型
既往研究发现影响 IgAN 预后的多项危险因素,包括基线尿蛋白 > 1g/d、高血压、肾功能不全、高尿酸血症、男性、严重病理评分等,并在此基础上建立了多种预测 IgAN 预后的评分系统,但这些评分系统受制于样本量小,病理评分标准不一, 纳入特征少以及评分临床实用性欠佳等缺点。
本文致力于使用 2047 例中国长期随访 IgAN 患者数据,借助机器学习方法,建立结合临床及肾脏病理的预后风险预测模型及风险分层系统,使医生可快速准确地预估患者的肾脏预后风险。
数据及实验设计:
回顾性分析采用来自中国 18 个临床中心的 1997 年 1 月~2010 年 6 月住院经肾活检确诊为 IgAN 患者的临床及随访资料。数据涵盖了患者的人口学特征、生理指标、病理指标等36个变量。临床结局定义为 “eGFR 较基线下降≥50% 或 终末期肾病(end-stage kidney disease, ESKD)” 。
根据以上研究对象及观察指标建立的预测模型,可以在患者活检时预测以上临床结局的风险,预测时间窗口为活检后 5 年。
AI融合统计模型,兼顾模型精准度和实用性
XGBoost精准预测:
本文首先使用XGBoost方法进行了建模。
目前为止,XGBoost 方法在中小型结构 / 表格数据上已取得了无数卓越的成绩。其作为一种基于决策树的集成机器学习算法,使用梯度上升框架,适用于分类回归问题,速度快,效果好。
本文选取 XGBoost 作为预测模型,除了其精准的预测能力外,还有一个更重要的原因,即 XGBoost 自动处理缺失值的能力。缺失值在医疗数据中一直是个无法避免又棘手的问题。由于大部分机器学习模型都需要较多的变量作为输入,在实际临床应用时很难将所需变量搜集完整。这一点阻挠了机器学习算法在临床实践中的广泛应用。XGBoost 方法自动学习缺失值的分类方向,从而摆脱了在实际应用时缺失值造成的束缚。
本文输出了重要性排名前十的变量(如下表)。在 NJIgAN‑RSS 系统中,用户可以根据实际情况填入这些变量的信息,获取预测的风险概率。
Stepwise Cox 简化评分:
为了进一步增强系统在临床实践中的实用性,本文进一步构建了无需借助计算机便能使用的打分模型。
Stepwise Cox 作为一种传统的回归分析模型,每个被选择的变量都有一危险比(hazard ratio,HR),其统计学显著性可用 p 值来评估,临床解释性能佳,故本文利用该方法建立简化评分模型。
Stepwise Cox 在建模过程中自动进行特征选择,但由于其采用的逐步递归特征选择非常容易陷入局部最优解,所以直接基于原始的 36 个变量进行建模所得到的模型效果并不理想。
本文基于了 XGBoost 给出的对于模型分类效果具有显著作用的 10 个变量作为初始变量,在此基础上进行Cox 回归建模, 从一定程度上减小了局部最优带来的弊端。
本文通过 CHAID 方法进一步将 stepwise Cox 选出的变量进行离散化,将 Cox 回归系数作为打分模型权重,得到了最后的打分模型。打分最终纳入了 3 个变量:肾小管萎缩/间质性纤维化比例(%) (基于牛津分型分为 T1;T2)、球性硬化比例>25%、尿蛋白>1g/d, 最终将患者 3 个变量对应的得分相加,即得到患者的风险分层评分(risk stratification score,RSS),进一步将 0‑1 分为低危组,2 分为中危组,3‑4 分为高危组。
模型评价结果
XGBoost 模型在训练集及验证集上的 C‑statistics 分别为 0.89、0.84。本文对比了 XGBoost 以及其他机器学习、统计方法的区分度性能,如下表。
简化版评分模型在训练集上的 C‑statistic为 0.81 (95% CI, 0.76‑0.86),验证集为 0.80 (95% CI, 0.75‑0.84)。现有评分模型ARR 在本文训练集上的 C‑statistic为 0.71 (95% CI, 0.65‑0.77),验证集为 0.74 (95% CI, 0.69‑ 0.78)。可见,本文所建立的评分模型与现有模型相比,在预测精准度上具有显著的提高。
模型一致性结果如下图所示,Hosmer‑Lemeshow 检验所得统计值 1.144,p‑value=0.8,说明此模型一致性结果较高。
下图展示了风险得分为 0‑4 分人群的 Kaplan‑ Meier 曲线(ESKD 及联合结局)。Log‑rank test 的结果(P < 0.001)说明发现利用本文的评分模型对 IgA 肾病病人的预后风险进行了很好的分层。
结论
本文建立了 IgAN 患者的肾脏预后风险预测系统 NJIgAN‑RSS,包含了精准的 XGBoost 概率预测模型以及简化版的 SSM打分模型,并对其进行了外部验证。与现有的 ARR 模型相比取得了更加精准的预测性能。该项研究推动了 AI 算法在疾病预测方面的应用。
NJIgAN‑RSS 系统已在网上公开发布(http://njszb. gdpcloud.com/),用户输入各项参数后,便可获得患者五年内的预后风险概率以及风险等级。
最新内容
手机 |
相关内容
所有遥不可及,终因AI触手可及
所有遥不可及,终因AI触手可及,出行,平台,无人驾驶汽车,导致,人工智能,学习,人类历史上,有许多事物曾被认为是遥不可及的,然而随着科技黑芝麻智能助力亿咖通科技旗下首款
黑芝麻智能助力亿咖通科技旗下首款智能驾驶计算平台成功量产交付,智能驾驶,计算,助力,首款,交付,智能,近年来,智能驾驶技术逐渐成为硅谷:设计师利用生成式 AI 辅助芯片
硅谷:设计师利用生成式 AI 辅助芯片设计,芯片,生成式,硅谷,优化,修改,方法,在硅谷,设计师们正在利用生成式人工智能(AI)来辅助芯片设计阅流智作:一种全新的生成式AI视频制
阅流智作:一种全新的生成式AI视频制作方式,或将颠覆专业视频生产,生成式,全新,视频制作,数据,学习,用户,阅流智作是一种全新的生成式A探秘英伟达显卡的制造之路 | 英伟
探秘英伟达显卡的制造之路 | 英伟达断供GPU,中国大模型何去何从?,英伟达,模型,中国大,显卡,方案,能力,英伟达(NVIDIA)是全球领先的图形一种基于聚合物的化学电阻式传感器
一种基于聚合物的化学电阻式传感器使患者检测更容易,使患,传感器,检测,用于,标志物,尿液,基于聚合物的化学电阻式传感器是一种用于创建更低延迟和更高效率的 5G 系统
创建更低延迟和更高效率的 5G 系统,延迟,系统,5G,优化,方法,网络架构,随着技术的不断发展,人们对通信系统的需求也在不断增加。5G技数据中心如何更快、更经济地利用AI
数据中心如何更快、更经济地利用AI?,经济,数据中心,用于,机器学习,计算,自动化运维,数据中心中使用人工智能(AI)技术可以带来许多好处,