首页 / 行业
为什么优秀的算法工程师都不用深度学习
2019-05-05 16:38:00
前几天面试了一个C9应届硕士生,模式识别专业,连续问好几个专业问题都没能答上来。
尴尬之余,我问他:「你没有什么理想吗?你现在最渴望的事情是什么?」
他转悠着大眼睛,不假思索道:「将kaiming大大的Resnet扩展到10万层,把kitti,COCO数据库检测识别任务提升20个点以上」
真没想到在面试中居然还有这种操作。
我问为什么这能成为现阶段最渴望的事情,他反问「你难道不为LeCun、Bengio和Hinton的执着精神所感动么?你难道不羡慕ILSVRC2012 AlexNet大放异彩么?你难道不被googlenet,Resnet的深邃思想所折服么?」
好有道理我竟无法反驳。
这么了解市场的工程师,一定是个不可多得的人才!
于是,我决定:不录取他。
这几年,深度学习在CV领域大行其道,不论是detection,segmentation,classification,还是stereo matching,pose estimation,深度学习把之前传统各种state of the art方法爆出翔。现今,算法工程师不知道经典网络,流行框架都不好意思和别人打招呼。
此现象仅仅局限于刚入坑的小白。但是对于浸淫5年以上的无论bat算法经理还是资深人肉特征设计工程师,这种事情对于他们不过是一种笑谈。久而久之,我发现一个残酷的共同点——
他们只用传统方法。
工资不高吗?最低的月薪都有20K+,还有公司期权和股票。
技术不行吗?Paper 发到手软,代码编译一次就好。
我问过其中一个:我看你整天针对不同任务,手动设计特征,分类器不累么,不想试试cnn方法么?
他说:废话,肯定想啊。
我问:那为什么不试一下LeNet,AlexNet呢,caffe框架下不是都有例子么?
他叹气:不,太忙。
他意味深长道:优秀的算法工程师都是不用深度学习方法的。
跟我聊天的这个人,本身就是个大神,BS CMU,MS Stanford,doctor在MIT,三年完成五年课程,读博期间发了100多篇sci,h index 40好几,回国任创业公司首席科学家,闲着没事发 Paper 玩,引用也很可观。
追随兴趣投入cv研究10几年,早在01年Paul Viola提出Haar与级联adaboost时,小修了特征与分类器,识别率提升了0.1%,达到当年人脸检测领域的state of the art。后来受不了国外大学对华裔学术上的歧视,毅然回国,目前早已实现财务自由。
这样的算法佬,我想出来,从来不买好的显卡跑深度学习,买来显卡应该也是吃鸡用的吧。
我还是认识另一个算法工程师。
最喜欢传统特征与分类器,像gabor滤波器,LBP特征,adaboost算法,SVM分类,random forest等自然是如数家珍,每每惊叹于harr特征在人脸检测,hog在人体检测,LBP在人脸识别取得的成功而热泪盈眶。但也由于过于痴迷,每天神神道道: 秀,天秀,陈独秀,蒂花之秀。对于深度学习方法不屑一顾,可以搭出比cnn更work传统特征+分类器方法。
这个人才是是圈子里的一股清流。
他最大的爱好是在视频监控rgb通过高斯背景建模生成的前景图像上,用米尺丈量显示器来确定物体的宽高比,剔除树叶抖动,水波荡漾,磕头机等带来的误报。此等神级操作在刚入坑的小白看来,是那样的格格不入。有时也有人劝他,目前cnn通过剪枝,压缩模型等技术,在1080ti上已经达到实时,你也可以试一下,减少一下工作量。
他却不会受到任何影响。
我问他:你到底怎么保持一颗平常心的,别人都用深度学习取得较好的泛化效果,你却针对一个个场景手工设计特征和分类器,不累么?
他笑,说:累又怎么了,不服让深度学习跑在低端arm平台上试试?
我立刻懂了。
同样是这个人,利用传统方法,在特定场景实现比深度学习更好的效果,而且通过5轮算法优化,硬是把算法移植到低端平台,每路为公司剩下2K的成本,这是一种工匠精神。
上周跟一个 CEO 朋友出去吃饭,他说他招来的一些菜鸡算法工程师,总想买多个1080ti显卡,用深度学习方法提升研发效率。
他跟我说,「可你不一样,你会一直提醒我,要我远离舒适区,要我不能安于现状,要我有危机意识,你好像特别看重用传统方法解决问题。」
人都是需要独立的。
仍是要永远年轻,永远热泪盈眶。
仍是要时时刻刻对美好满怀期待,对未来充满渴望,对经典心怀敬畏。
要记住啊,知世故而不世故,处江湖而远江湖,才是最善良的成熟。
最新内容
手机 |
相关内容
重庆东微电子推出高性能抗射频干扰
重庆东微电子推出高性能抗射频干扰MEMS硅麦放大器芯片,芯片,推出,算法,抑制,音频,信号,重庆东微电子有限公司最近推出了一款高性能高精度3D视觉技术,助力工业机器人实
高精度3D视觉技术,助力工业机器人实现汽车零部件高效上下料,工业机器人,助力,视觉,高精度,3D,算法,高精度3D视觉技术在工业机器人上嵌入式视觉技术如何赋予机器观察能
嵌入式视觉技术如何赋予机器观察能力,能力,视觉,嵌入式,跟踪,特征,计算,嵌入式视觉技术是一种将人的视觉能力赋予机器的技术。通过数据中心短缺:人工智能未来的致命阻
数据中心短缺:人工智能未来的致命阻碍?,人工智能,数据中心,采用,需求,算法,存储技术,数据中心短缺是人工智能未来发展的一个重要致命比较器芯片和运放电路的区别
比较器芯片和运放电路的区别,运放,芯片,比较器,信号处理,响应,需求,比较器芯片和运放电路是常用的电子元件,它们在电路设计和信号处从零基础开始,掌握低代码+ Al 的应
从零基础开始,掌握低代码+ Al 的应用技巧,零基础,方法,框架,工具,深度学习,学习,低代码(Low-Code)是一种通过可视化开发工具和少量手写机构称发现“全球最先进”3D NAND
机构称发现“全球最先进”3D NAND存储芯片,存储芯片,发现,机构,3D,芯片,算法,长江存储(Yangtze Memory Technologies Co., Ltd.,以下TDK机器学习解决方案促进边缘人工
TDK机器学习解决方案促进边缘人工智能前景大幅扩展,解决方案,前景,边缘,人工智能,机器学习,扩展,随着人工智能的不断发展,边缘计算作