首页 / 行业
5G eMBB实现之『道』!5G毫米波的引入
2019-04-28 14:46:00
—
5G eMBB实现之『道』
增强型移动宽带(eMBB),是现阶段5G最重要的发展方向,也是我们看得见摸得着的未来。
在5G基站下,国际电联的愿景是单小区可达20Gbps的速率。而在巴塞展上,国内的5G先锋中兴通讯曾经演示过惊人50Gbps峰值下载速率!
▲中兴通讯的5G演示
在这一切的背后,到底是何方神圣,能拥有如此大的能量?
这就要从“道”和“术”两方面来理解。“道”可认为是提供支撑的理论基础,“术”就是在此之上的实现方法。
两千五百年前,中国伟大的思想家老子曾说过:“道生一,一生二,二生万物”。那么到底什么是道呢?老子又说:“道可道,非常道”。
老子说得没错,但尽管“道”难以说清,还是有人为此孜孜不倦。70年前,美国的克劳德•香农发表了一篇划时代的论文《通信的数学理论》,从而成为了无线通信理论的奠基人,“道”终于“可道”了。
▲香农
香农公式,精确地描述了决定通信系统容量的几个因素和它们之间的关系。作为移动通信之“道”,2G,3G,4G要遵从,5G照样不例外。
▲香农公式
这个公式看起来非常的狰狞可怕,我们如果能鼓起勇气硬着头皮看一遍的话,就会发现,系统容量和信道带宽成正比,或者说,信道带宽越大,系统容量就越大!容量大了,不就是上网速度快了么?
5G的设计者也是这么想的:大幅提升网络速率,增加信道带宽是第一要务。那么,就从4G的20M带宽提升到100M,甚至400M吧!
可是常用的频段都让2G/3G/4G给占了,连WiFi也占了一大段,留给5G的已经不多。巧妇难为无米之炊,这可怎么办?
02
—
5G 毫米波的引入
于是,5G将眼光投向一片新的处女地。这里不但带宽丰沛,而且大部分都空闲着,正好为5G施展拳脚所用,真是一片流着蜜与奶的好地方。
▲5G毫米波候选频谱
这片处女地就是“毫米波”,又叫5G高频,一般指频率在30GHz到300GHz这段范围内的频谱,相对于传统的Sub6G来说频率要高得多,频率越高波长越短。
▲频率越高,波长越短
根据电磁波的“波长λ=光速C÷频率f”这个公式可以得出,该段频谱的波长在1毫米到10毫米之间,因此得名“毫米波”,又叫mmWave,实际5G所用的毫米波下限是24GHz。
下图是5G毫米波的候选频段,可以看出,相比于拥挤的Sub6G频谱(2G/3G/4G/WiFi都在这一段狭窄的范围内),毫米波的频谱资源简直是太丰富了!就这还只是毫米波频段的一小部分而已。
、▲5G毫米波的带宽极为丰沛
目前标准确定的5G毫米波频谱叫FR2 (Frequency Range 2)集中在24GHz到29GHz这5G带宽,也基本可以满足5G初始部署阶段的需求了。
▲标准化的5G毫米波频谱
既然毫米波的资源这么丰富,为什么现在2G/3G/4G都非要挤在低频Sub6G不可,甚至5G也首先在Sub6G来部署?
03
—
毫米波的致命弱点
这是因为毫米波有致命的弱点——覆盖差。
电磁波的在空气中的传播有个特点,就是频率越高,损耗越快,绕射,穿透能力越差。典型的损耗分类有下面这几种:
1. 自由空间路径损耗:由于信号能量在自由空间的扩散,在传播了一定距离后,信号能量会发生衰减,功率损耗量和频率的平方成反比。举例来说,也就是频率增大3倍,损耗就会增加9倍!
▲频率越高,自由空间损耗越大
2. 绕射损耗:电磁波传播过程中由障碍物引起的附加传播损耗。频率越高,绕射能力越差,绕射损耗越高。
▲频率越高,绕射损耗越大
3. 穿透损耗:电磁波传播过程中,穿透建筑,花草树木等障碍物产生的损耗。频率越高,穿透能力越差,穿透损耗越高。
▲频率越高,穿透损耗越大(穿透树木)
▲频率越高,穿透损耗越大(穿透建筑)
4. 雨衰损耗:电磁波信号因大气中的雨、雪、冰的吸收,散射等现象导致信号减弱的现象。通常频率越高,衰减越大。
▲5G毫米波受天气的影响非常严重
信号在空间中的传播是上述几种衰减方式的总和。如果用低频2.6GHz和高频28GHz进行对比,在信号传播路径相同的情况下,经历的衰减如下图所示。
▲5G毫米波经历的层层损耗
毫米波28GHz由于频率高,每一步经历的衰减都要比2.6GHz多得多:
①自由空间损耗:多20dB;
②绕射损耗:多10dB;
③树木穿透损耗:多8dB;
④房屋穿透损耗:多14dB;
⑤室内传播损耗:多5dB。
把这些值加起来,可以得出:同样的发射功率,经历同样的传播路径,最终用户收到28GHz的信号是2.6GHz信号强度的百万分之一!
▲和2.6GHz相比,毫米波的传播损耗非常大
毫米波的覆盖这么差,看来这片“流着奶与蜜的处女地”确实不是那么好开发。但其大带宽高速率的诱惑是无法抗拒的,因此在使用中就必须扬长避短。
04
—
5G 毫米波的部署之『术』
首先,怎么扬长呢?最重要的方式是:
波束赋形
一般情况下,天线单元使用半个波长效率最高,因此电磁波的波长越短,所需要的发射和接收天线单元也就越小。
▲频率越高,电磁波的波长越短,所需要的发射和接收天线单元也就越小
而毫米波的特点正是波长短,所以天线的尺寸可以很小,在同样的面积下可以容纳更多的天线。通过调整天线阵列的基本单元的参数,使得某些角度的信号获得增强干涉,而另一些角度的信号获得抵销干涉,从而使信号在特定的方向上增强,这就是波束赋形。
▲频率越高,天线数量越多,赋形效果越好
波束赋形能力取决于天线单元的个数,个数越多,波束越窄,越能波束集中能量对准用户,提升覆盖规避干扰,赋形效果也就越好。
下图中的5G毫米波设备含有256个天线单元,每64个为一组,通过波束赋形来生成窄波束,因此该设备一共能提供4个波束来进行高速服务。这种实现方式是目前毫米波设备的主流。
▲真实的5G毫米波设备
有了波束赋形的加持,毫米波的一个个窄波束可以集中能量,精确对准并跟踪用户移动,带来更好的用户体验并降低干扰。
▲波束赋形在工作
下面再说下5G毫米波是怎么避短的。
1.微站超密组网
首先,宏覆盖就别想了,要宏覆盖找低频去。咱毫米波就安心做微站和室内站,覆盖热点区域和室内就好,毕竟这些地方人多,流量需求大,更需要5G。
▲毫米波更适用于微站覆盖
如果有区域的流量需求持续升高,从热点变成了沸点,甚至到达了爆点,毫米波的覆盖距离虽然近,但可以布地密一点,再密一点,成为超密组网。
▲5G毫米波超密组网
2.高低频宏微协同组网
为了弥补毫米波的覆盖问题,还可以和低频Sub6G协同组网,同时使用两个频段,低频负责控制面,高频负责用户面,这样既可以进行无感知的小区切换,还能享用高频带来的极致速率。
▲5G高低频宏微协同组网
总之就是,毫米波是5G实现eMBB业务的杀手锏。虽然毫米波有很大缺点,但只有优点够突出,这些缺点都是可以用各种各样的技术方案来弥补的。
最新内容
手机 |
相关内容
加特兰毫米波雷达SoC芯片赋能室内
加特兰毫米波雷达SoC芯片赋能室内安防新应用,毫米波雷达,芯片,用于,稳定性,目标,感知,室内安防是一个重要的领域,随着技术的进步和人MediaTek 发布天玑 9300 旗舰 5G
MediaTek 发布天玑 9300 旗舰 5G 生成式 AI 移动芯片,开启全大核计算,旗舰,芯片,生成式,5G,支持,移动设备,MediaTek 是一家全球领先创建更低延迟和更高效率的 5G 系统
创建更低延迟和更高效率的 5G 系统,延迟,系统,5G,优化,方法,网络架构,随着技术的不断发展,人们对通信系统的需求也在不断增加。5G技FD-SOI技术在毫米波雷达芯片中有何
FD-SOI技术在毫米波雷达芯片中有何应用?,毫米波雷达,芯片,温度,性能,高频,稳定性,FD-SOI(Fully Depleted Silicon on Insulator)是一种远程实时监控管理:5G物联网技术助力
远程实时监控管理:5G物联网技术助力配电站管理,电站,物联网技术,实时监控,5G,故障排查,网络,随着科技的不断进步和发展,物联网TPS6108基于工业5G网关的工业机器人监测控
基于工业5G网关的工业机器人监测控制方案,控制,网关,工业机器人,监测,方案,5G,随着工业4.0的快速发展,CAT24C04WI-GT3工业机器人在生分享一种隔离器互调测试方法
分享一种隔离器互调测试方法,测试方法,分享,测量,信号,频谱,测试,隔离器互调测试是一种评估隔离器性能的重要方法。BC857BW隔离器的一体成型电感在5G模块中的优势
一体成型电感在5G模块中的优势,模块,5G,结构设计,抗震,性能,稳定性,随着5G通信技术的快速发展,5G模块的需求也越来越高。而一体成型