首页 / 行业
DSP运控应用,单芯片不再是主流
2022-08-08 08:00:00
数字信号处理器DSP在工业控制、消费电子、雷达图像传感等诸多领域都有很多的应用,这得益于DSP接口简单、集成方便、可重复性好。DSP在机器人系统的应用随着数字信号处理技术的发展也在不断深入。
在此前关于DSP在机器人系统中应用的文章中我们曾了解到,DSP在视觉应用上设计弹性非常高,相比于Cortex-M4架构内建浮点运算单元只能实现低阶影像讯号处理,以及x86架构下工控平台的大功耗高成本,DSP在视觉应用上的都是性能和成本的绝佳选择。而在运控上,虽然DSP和MCU在控制上争夺还没有那么激烈,但随着机器人控制系统对实时性、数据量以及计算要求的不断提升,高速高性能的DSP也备受青睐。
机器人DSP运控设计
目前国内外的机器人大多数都采用上位机和下位机结合控制的方式,上位机发出机器人的控制命令,上位机和下位机经过通讯完成机器人的控制指令。下位机就是机器人的控制器,负责完成机器人的运动控制,在整个控制系统处于核心的地位,不仅要处理上位机发送来的命令,还要向上位机反馈传感器信息,实现精确控制机器人运动的目标。
在工业机器人系统控制设计中,DSP在数字处理部分扮演了重要角色。上位机发出控制命令(运动控制命令和机械手控制命令),DSP对接收的数据进行解析,独立(或者与FPGA一起)完成整个系统的电机控制和机械手控制。DSP控制设计中DSP运算速度直接影响整个闭环运控的精度。
这一块市场被TI、ADI、NXP等国际大厂主导,多年的硬件研发经验和完善的软件开发环境,用户生态都较为完备,在机器人应用中也多以这些大厂的DSP为主。TI的C2000系列的DSP 芯片、ADI的ADSP-21xx系列都广泛应用于运动控制领域。
就TI的产品线来说,市面上最常见的就是用最普通的C2000系列DSP来做,性价比高;高端一点的用C55x系列,运算性能提升功耗更低;而TI官网推荐的C6654 DSP属于更高性能场景才会用到的DSP,850MHz的内核速度每个周期能够执行8次单精度浮点MAC运算,并且可执行双精度和混合精度运算。这种性能的内核即便是高性能的自动化运控场合也完全没有问题。
(C6654 DSP,TI)
一般来说,主机不会直接和DSP通讯,都通过共用内存来交换数据。共享内存的通信方式相对来说可以给整个控制更快的数据交换,像C6654 DSP因为采用KeyStone架构,配置了多种创新组件和技术,器件内和器件间的通信会更快一些。
机械手的控制利用DSP的ePWM模块完成,DSP根据求解出的机械手各个关节的关节角,控制各个舵机的运动以达到末端期望目标的位姿。
(32位RISC-V DSP,中科昊芯)
国内像青岛本原微电子的高端DSP芯片,中科昊芯基于开源指令集架构RISC-V的DSP芯片在机器人DSP应用上也颇有建树。上图中中科昊芯的32位RISC-V DSP基于自研的H28x内核,200MHz主频并增强了存储配置了ePWM等增强型外设,基于FPU浮点处理单元与自定义浮点指令专门支持高性能FOC、多电平控制,在控制领域应用颇多。
单芯片DSP集成进SoC成主流
从全球领先厂商TI、ADI的产品更新来看,DSP从单核发展到同构多核再到异构多核,现在要么使用单芯片DSP模式,要么以处理单元的形式集成在SoC中。
(M4内核集成浮点运算单元,ADI)
机器人应用往多核异构架构的发展才能兼顾算力和扩展性,这一趋势很明显。且不说视觉应用里DSP在性能及成本考量上应用于机器视觉的主、次系统中都较为适宜(不论是单颗DSP还是内嵌多核心DSP以及中央处理器SoC方案)。在机器人控制应用里,市面上独立DSP的方案也肉眼可见得越来越少,独立DSP正在越来越多地转向SoC的一个处理单元。
小结
运动控制的发展无疑是向着更智能更精准这一方向,机器人的快速发展也离不开控制系统的优异性能。不断复杂化智能化的控制系统,不仅对DSP厂商,对整个上游核心芯片供应商来说都是一次发展的契机。
在此前关于DSP在机器人系统中应用的文章中我们曾了解到,DSP在视觉应用上设计弹性非常高,相比于Cortex-M4架构内建浮点运算单元只能实现低阶影像讯号处理,以及x86架构下工控平台的大功耗高成本,DSP在视觉应用上的都是性能和成本的绝佳选择。而在运控上,虽然DSP和MCU在控制上争夺还没有那么激烈,但随着机器人控制系统对实时性、数据量以及计算要求的不断提升,高速高性能的DSP也备受青睐。
机器人DSP运控设计
目前国内外的机器人大多数都采用上位机和下位机结合控制的方式,上位机发出机器人的控制命令,上位机和下位机经过通讯完成机器人的控制指令。下位机就是机器人的控制器,负责完成机器人的运动控制,在整个控制系统处于核心的地位,不仅要处理上位机发送来的命令,还要向上位机反馈传感器信息,实现精确控制机器人运动的目标。
在工业机器人系统控制设计中,DSP在数字处理部分扮演了重要角色。上位机发出控制命令(运动控制命令和机械手控制命令),DSP对接收的数据进行解析,独立(或者与FPGA一起)完成整个系统的电机控制和机械手控制。DSP控制设计中DSP运算速度直接影响整个闭环运控的精度。
这一块市场被TI、ADI、NXP等国际大厂主导,多年的硬件研发经验和完善的软件开发环境,用户生态都较为完备,在机器人应用中也多以这些大厂的DSP为主。TI的C2000系列的DSP 芯片、ADI的ADSP-21xx系列都广泛应用于运动控制领域。
就TI的产品线来说,市面上最常见的就是用最普通的C2000系列DSP来做,性价比高;高端一点的用C55x系列,运算性能提升功耗更低;而TI官网推荐的C6654 DSP属于更高性能场景才会用到的DSP,850MHz的内核速度每个周期能够执行8次单精度浮点MAC运算,并且可执行双精度和混合精度运算。这种性能的内核即便是高性能的自动化运控场合也完全没有问题。
(C6654 DSP,TI)
一般来说,主机不会直接和DSP通讯,都通过共用内存来交换数据。共享内存的通信方式相对来说可以给整个控制更快的数据交换,像C6654 DSP因为采用KeyStone架构,配置了多种创新组件和技术,器件内和器件间的通信会更快一些。
机械手的控制利用DSP的ePWM模块完成,DSP根据求解出的机械手各个关节的关节角,控制各个舵机的运动以达到末端期望目标的位姿。
(32位RISC-V DSP,中科昊芯)
国内像青岛本原微电子的高端DSP芯片,中科昊芯基于开源指令集架构RISC-V的DSP芯片在机器人DSP应用上也颇有建树。上图中中科昊芯的32位RISC-V DSP基于自研的H28x内核,200MHz主频并增强了存储配置了ePWM等增强型外设,基于FPU浮点处理单元与自定义浮点指令专门支持高性能FOC、多电平控制,在控制领域应用颇多。
单芯片DSP集成进SoC成主流
从全球领先厂商TI、ADI的产品更新来看,DSP从单核发展到同构多核再到异构多核,现在要么使用单芯片DSP模式,要么以处理单元的形式集成在SoC中。
(M4内核集成浮点运算单元,ADI)
机器人应用往多核异构架构的发展才能兼顾算力和扩展性,这一趋势很明显。且不说视觉应用里DSP在性能及成本考量上应用于机器视觉的主、次系统中都较为适宜(不论是单颗DSP还是内嵌多核心DSP以及中央处理器SoC方案)。在机器人控制应用里,市面上独立DSP的方案也肉眼可见得越来越少,独立DSP正在越来越多地转向SoC的一个处理单元。
小结
运动控制的发展无疑是向着更智能更精准这一方向,机器人的快速发展也离不开控制系统的优异性能。不断复杂化智能化的控制系统,不仅对DSP厂商,对整个上游核心芯片供应商来说都是一次发展的契机。
最新内容
手机 |
相关内容
射频连接器使用技巧与注意事项
射频连接器使用技巧与注意事项,连接器,选择,频率,类型,连接,传输,射频连接器是一种用于连接射频电路的电子元件,常用于无线通信系统电流互感器作用 电流互感器为什么
电流互感器作用 电流互感器为什么一端要接地?,作用,误差,原因,连接,测量,短路故障,电流互感器(Current Transformer,简称CT)是一种用于半导体主控技术:驱动自动驾驶革命的
半导体主控技术:驱动自动驾驶革命的引擎,自动驾驶,交通,自动驾驶系统,数据,车辆,自动,随着科技的不断进步,自动驾驶技术已经成为现实晶振在激光雷达系统中的作用
晶振在激光雷达系统中的作用,作用,系统,激光雷达,晶振,可靠性,选择,激光雷达(Lidar)是一种利用激光进行测距的技术,广泛应用于自动驾驶单相滤波器:从基础到应用的全面解读
单相滤波器:从基础到应用的全面解读,滤波器,能和,噪声,选择,信号,工作原理,TVP5146PFP单相滤波器是一种用于去除电源信号中的杂波和变频器与电动机使用中需要了解的常
变频器与电动机使用中需要了解的常识,常识,变频器,转速,安装,调节,选择,BAT54S-7-F变频器与电动机是现代工业中常见的设备,常用于调Arbe 4D成像雷达以高分辨率雷达技
Arbe 4D成像雷达以高分辨率雷达技术和先进处理技术消除“幽灵刹车”问题,刹车,成像,分辨率,系统,目标,数据,Arbe 4D成像雷达是一种浅析动力电池熔断器的基础知识及选
浅析动力电池熔断器的基础知识及选型,动力电池,时切,系统安全,作用,产品,系统,BA4558F-E2动力电池熔断器是用于保护动力电池系统安