首页 / 行业
2024年设备端AI推理功能将覆盖近60%的设备
2022-08-11 09:32:00
ABI的研究调查表明,预计到2024年设备端的AI推理功能将覆盖近60%的设备。FPGA作为实现边缘AI的技术方式之一受到了青睐。要知道AI的算法灵活多变,FPGA硬件可编程可以适应快速变化的机器学习算法,它可以做灵活的计算资源,包括预处理、后处理、图像处理和滤波等数据。还能进行性能扩展,可实现高速并行处理。因此,我们看到不少FPGA厂商正在大力推动FPGA在边缘计算的应用。
去年莱迪思发布了sensAI 4.1解决方案,当时介绍的一个典型案例是用于PC智能和感知体验。如今,这一方案已经落地于品牌笔记本电脑。凭借其优异特性和不断增强的性能,莱迪思sensAI 4.1解决方案还可广泛应用于工业、安防等众多领域,可挖掘的边缘智能应用非常之多。
莱迪思sensAI 4.1解决方案提升品牌笔记本电脑交互体验
Lattice Nexus FPGA和sensAI解决方案集合可用于开发计算机视觉和传感器融合应用,可以提升用户的参与和协作,保护用户隐私,同时可以帮助开发人员实现新颖的AI功能,提高设备的电池寿命。
据测试,与使用CPU来驱动 AI 应用的设备相比,采用 sensAI 开发,并在莱迪思FPGA上运行的 AI 计算设备的电池使用时间延长了28%。sensAI 还支持现场软件更新,从而保持AI算法的演进,还能让OEM厂商灵活选择不同的传感器和SoC技术来适配他们的设备。
比如在用户检测应用上,用户接近或离开设备时会自动启动或关闭客户端设备;注意力追踪:当用户的注意力不在屏幕上时,降低设备的屏幕亮度,节约电量,延长使用时间;面部取景:在视频会议应用中提升视频体验;旁边者检测:检测站在设备后面潜在的窥视者,模糊屏幕以保障数据隐私。
当然,这也需要Lattice和OEM、其他芯片厂商、操作系统和软件支持商,以及传感器厂商合作,共同推动方案落地。据了解,目前莱迪思已与联想合作,ThinkPad X1系列笔记本电脑采用了专为AI优化的软件方案,能够在不损失性能或电池使用时间的情况下提供优化的用户体验,包括沉浸式交互、更好的隐私保护和更高效的协作。LG也在其最新的GRAM系列产品用采用莱迪思AI和计算机视觉解决方案,提升安全和便捷特性。
sensAI 4.1的增强特性
莱迪思最新发布的sensAI解决方案集合4.1版本提供了即用的AI/ML工具、IP核、硬件平台、参考设计和演示以及定制化设计服务,有助于设计团队开发新的网络边缘设备,并将其快速推向市场。
最新版本的sensAI支持CertusPro-NX FPGA。这个器件的容量会提升,同时计算的能力和功效也会提高,在这款器件基础上,推出了相对应的开发板,称之为声音和视觉机器学习板。还提供支持这块新芯片的CNN Plus加速器,以及相对应的sensAI Studio。
随着sensAI 4.1支持莱迪思CertusPro-NX FPGA系列产品,sensAI的性能也有了较大提升,除了已有的对象检测和追踪应用之外,还新增了对多个对象实时分类等应用。包括自动化工业系统中使用的高精度目标检测和瑕疵检测等应用。该解决方案集合拥有全新硬件平台,包括板载图像传感器、两个I2S麦克风和用于添加更多传感器的扩展连接器,助力基于语音和视觉的机器学习应用的开发。
sensAI还更新了神经网络编译器,支持Lattice sensAI Studio,这是一款基于GUI的工具,拥有AI模型库,经过配置和训练可适用于各类主流应用场景。sensAI Studio现支持AutoML功能,能根据应用和数据集目标来创建机器学习模块。一些基于Mobilenet机器学习推理训练平台的模型专为最新的Nexus系列产品——Lattice CertusPro-NX进行了优化。sensAI还兼容其他广泛使用的机器学习平台,包括最新版本的Caffe、Keras、TensorFlow和TensorFlow Lite。通过标准的Caffe、TensorFlow、TensorFlowLite、Keras等常用培训网络培训完之后,再通过Lattice提供的神经网络编译器,编译成相对应的可执行指令,这些指令最终会由Lattice的芯片所调取使用。
Lattice 提供一个硬件优化的设计方案,通过Lattice Radiant和DIAMOND设计AI解决方案,产生FPGA比特流,然后再把训练后的模型录进来,这样产生一个类似于中央处理器的功能,而这里产生的量化的权重和指令更多指向于执行的代码,这两个结合之后,可以产生一个AI的体验项目。
另外,从软件优化的设计方案中可以看到,Lattice专门提供了一个PROPEL的软件,这个是C代码开发环境,便于大家使用更常用的C代码实现开发而不是使用比较难以上手的FPGA硬件开发语言,这样的代码是便于初学者能够调用一些基本的指令进行一些控制。左侧更多指的是Lattice的开发AI引擎的一些架构,包括机器学习引擎,以此能够做视觉的收取,同时做软核的控制。
不断满足边缘计算的需求
网络边缘处理使得计算和数据存储越来越靠近收集数据的设备端,而不是在数千里之外的数据中心进行分析和决策。网络边缘的实时应用通常不容许高延迟,因此处理、分析和决策必须转移到设备本身。网络边缘设备包括自动驾驶汽车、物联网传感器、安全摄像头、智能手机、笔记本电脑和个人电脑等生成大量数据,而开发人员越来越多地采用人工智能和机器学习(AI/ML)算法来匹配和识别复杂的模式,以帮助分析数据并据此做出决策。
AI/ML算法可以识别出传统的算法程序难以解析和识别的复杂、多维度的数据模式。一些特定的AI/ML应用包括检测、识别、辨认和计数人员或物体;资产和存货追踪、环境感知、声音和语音检测和识别、系统健康监测以及系统维护调度等。
莱迪思sensAI 4.1 工具和IP将低功耗FPGA变为网络边缘智能AI/ML计算引擎。Lattice的网络边缘AI可以实现从一毫瓦到低于一瓦这样的功耗范围。同时,Lattice有灵活的计算资源,硬件可编程最大的特点就是实现加速和机器算法。此外,还内嵌了很多安全功能,具有更高的安全性。
目前Lattice Nexus平台已推出四款FPGA产品,包括CrossLink-NX、Certus-NX、Mach-NX、CertusPro-NX,未来还将有两款新品。同样,sensAI 也将不断推陈出新。总之莱迪思FPGA和sensAI解决方案以其性能、功耗以及灵活的优势推动边缘AI的广泛应用。
审核编辑:彭静最新内容
手机 |
相关内容
位移传感器结构类型及工作原理与应
位移传感器结构类型及工作原理与应用,工作原理,类型,结构,位移传感器,常见,效应,FDV302P位移传感器是一种用于测量物体位移或位置的华为公开半导体芯片专利:可提高三维
华为公开半导体芯片专利:可提高三维存储器的存储密度,专利,存储密度,存储器,芯片,存储单元,调整,华为是全球领先的信息与通信技术解加特兰毫米波雷达SoC芯片赋能室内
加特兰毫米波雷达SoC芯片赋能室内安防新应用,毫米波雷达,芯片,用于,稳定性,目标,感知,室内安防是一个重要的领域,随着技术的进步和人智能传感器助力打造数字经济数字世
智能传感器助力打造数字经济数字世界,数字,经济,传感器,助力,智能,及时发现,PCM1801U智能传感器是一种能够感知环境并将感知结果转芯片迈向系统化时代:EDA软件的创新
芯片迈向系统化时代:EDA软件的创新之路,时代,芯片,形式,支持,性能,验证,芯片设计是现代科技领域的重要组成部分,它涉及到电子设计自动单相滤波器:从基础到应用的全面解读
单相滤波器:从基础到应用的全面解读,滤波器,能和,噪声,选择,信号,工作原理,TVP5146PFP单相滤波器是一种用于去除电源信号中的杂波和清华大学研发光电融合芯片,算力超商
清华大学研发光电融合芯片,算力超商用芯片三千余倍,芯片,研发,商用,测试,计算,科学研究,近日,清华大学发布了一项重要科研成果,他们成聊聊芯片中的负压产生机理及其应用
聊聊芯片中的负压产生机理及其应用,芯片,细胞,用于,测量,生物,结构,芯片中的负压是指在芯片内部产生的负压环境。在某些应用中,负压