首页 / 行业
Kria SOM 加速实现从算法到机器学习模型
2022-08-02 15:04:00
不久以前,从算法到现场机器学习( ML )模型仍然需要经历漫长而复杂的道路。对于一些企业而言,如果能够接触到具有神经网络部署经验的 ML 专家,则可能会有一些选择,但其开发工作却非常耗时。赛灵思依托 ViTIs 统一软件平台以及近期推出的 KRIA SOM (System-on-Module),缩短了这一过程。DornerWorks 是 KRIA SOM 生态系统合作伙伴,正帮助各个机构在这个具有变革意义的平台上部署其 ML 算法和 IP。
是伙伴,更是专业开发者
DornerWorks 不仅是赛灵思卓越合作伙伴( Xilinx Premier Partner),也是与赛灵思合作推出全新 KRIA SOM 产品组合的设计服务合作伙伴。从事 ML/AI 项目、嵌入式器件和系统架构的开发者,能够借助 DornerWorks 算法集成专业知识,运用 KRIA SOM 创新的硬件与软件特性,加快其产品的开发速度。
DornerWorks 工程师 Shawn Barber 就开发了一款 KRIA SOM 机器学习演示,通过部署一种目标检测算法来定位和测量人眼间距。KIRA 的其他应用还涵盖工业检视、搜索与救援、交通安全监控和自动系统。
DornerWorks 开发的机器学习演示在赛灵思 KRIA SOM 上运行,能够识别人眼,围绕人眼绘制边框并测量人眼间距。
用设计提高性能上限
KRIA K26 SOM 构建在 Zynq® UltraScale+™ MPSoC 架构上,该架构内置一个四核 Arm® Cortex® A53 处理器、超过 25 万个逻辑单元,以及一个 H.264/265 视频编解码器。此外,SOM 还拥有 4GB DDR4 内存和 245 个 IO,因而能够适配几乎任何传感器或接口。这种灵活性是 KRIA SOM 最具吸引力的特性之一。
Barber 表示,在 FPGA 上运行 AI 检测引擎和其他组件,可以便于开发者按需适配计算单元。“如果您的条件相当有限,您可以缩小 FPGA 占板面积;而如果您希望获得较高性能,则可以扩大 FPGA 占板面积。此外,它还为您提供了额外的灵活性,可以将它移植到摄像头等其他外设上。”
与基于 GPU 的 SOM 相比,KRIA K26 SOM 的 AI 算力达 1.4TOPS,可以助力开发者开发出性能在 3 倍以上、时延与功耗却更低的视觉 AI 应用,这对安全摄像头、城市摄像头、交通摄像头、零售分析、机器视觉和视觉引导机器人等智能视觉应用而言至关重要。
审核编辑:彭静最新内容
手机 |
相关内容
重庆东微电子推出高性能抗射频干扰
重庆东微电子推出高性能抗射频干扰MEMS硅麦放大器芯片,芯片,推出,算法,抑制,音频,信号,重庆东微电子有限公司最近推出了一款高性能黑芝麻智能助力亿咖通科技旗下首款
黑芝麻智能助力亿咖通科技旗下首款智能驾驶计算平台成功量产交付,智能驾驶,计算,助力,首款,交付,智能,近年来,智能驾驶技术逐渐成为高精度3D视觉技术,助力工业机器人实
高精度3D视觉技术,助力工业机器人实现汽车零部件高效上下料,工业机器人,助力,视觉,高精度,3D,算法,高精度3D视觉技术在工业机器人上可穿戴传感器能够实现准确的实时检
可穿戴传感器能够实现准确的实时检测,检测,实时,传感器,可穿戴,高精度,数据传输,可穿戴传感器(Wearable Sensors)是一种集成在人体上探秘英伟达显卡的制造之路 | 英伟
探秘英伟达显卡的制造之路 | 英伟达断供GPU,中国大模型何去何从?,英伟达,模型,中国大,显卡,方案,能力,英伟达(NVIDIA)是全球领先的图形MTK天玑9300重磅发布:全大核时代到
MTK天玑9300重磅发布:全大核时代到来,330亿参数AI大模型装入手机,装入,模型,参数,时代,支持,处理器,近日,联发科技(MediaTek)正式发布了PODsys:大模型AI算力平台部署的开源
PODsys:大模型AI算力平台部署的开源“神器”,开源,模型,平台,运行,计算,用户,PODsys(Platform for Open-source Distributed System)是数据中心如何更快、更经济地利用AI
数据中心如何更快、更经济地利用AI?,经济,数据中心,用于,机器学习,计算,自动化运维,数据中心中使用人工智能(AI)技术可以带来许多好处,