首页 / 行业
评测、拆解|黑鲨散热背夹Pro,半导体制冷急速降温
2022-09-03 07:49:00
近年来,随着硬件性能的不断提高,手机发热的问题也愈发明显。再加上手机朝着轻薄化不断发展,手机内部空间不断被压缩,局促的内部环境限制了手机处理器、内存、闪存的散热效果,导致在重度使用的情况下,热量无法及时释放,经常会出现画面掉帧、操作卡顿的问题,影响使用体验。
即使现在很多手机都自带被动散热系统,但由于空间的局限性,在高温天气的应用场景中,依旧会出现发烫的问题。相比之下,通过外挂散热设备来主动降温,能够更好地解决手机发烫问题。
近日,笔者对一款来自黑鲨的冰封散热背夹Pro进行了拆解、测评,并对设备工作原理及设计进行了分析,具体细节见下文。
实测:输出功率、使用体验
首先从外观来看,黑鲨冰封散热背夹Pro采用了极简的外观设计,并通过蓝牙与手机互联的方式,来简化设备物理按键的数量。设备外部只预留了一个Type-C电源接口和一个电源开关按钮。
同时,这款散热背夹配合APP使用,用户还可以根据实际的使用需求,切换不同的散热模式,查看散热背夹当前实时温度,以及调整 RGB灯效设置样式等。
冰封模式(左) 极寒模式(右)
散热背夹的散热效果好不好,与功率大小有着必然的联系,这款散热背夹分别提供了极寒和冰封两种工作模式供用户选择。经笔者实测在极寒模式下,散热背夹的功率在7.3W至8W之间。在冰封模式下,散热背夹的功率在9.1W至9.5W之间。
在未贴合手机单独测评过程中发现,虽然两种工作模式功率差距只有1.5W左右,但降温效果非常明显,从室温25℃降至14摄氏度仅用了20秒,平均每两秒降低1摄氏度。
在游戏使用体验方面,笔者进行了一把7分钟的游戏对局,并在游戏开始前将手机画质效果开至最高,让手机发热量最大化。一把游戏下来,通过APP反馈的数据来看,这款手机背夹的散热效果还是非常不错的,温度能够很好地控制在20℃左右。并且设备重量也不是很重,使用起来并不会累手。但是,在握持体验方面,由于散热背夹体积较大的原因,手指无法充分施展开来,对游戏体验有所影响。
拆解
这款散热背夹主要由手机固定夹、散热器以及散热器保护罩3部分构成。
手机固定夹采用了传统的机械式设计,通过弹簧拉伸的方式固定手机。
手机固定夹是手机与制冷片之间温度传递的媒介,通过面积更大的铜箔与制冷片相接触,进一步散热面积,并通过在铜箔与制冷片之间涂抹大量硅脂的方式,提高冷传递的效果。
同时,为了避免金属铜箔与手机之间摩擦产生划痕,还在两层铜箔的基础上放置了一块柔性的导冷垫,不仅保护了手机不被刮花,还提高了手机与散热背夹的契合度,让手机更好地散热。
为了更直观地体现降温效果,这款散热背夹在最贴近手机侧的散热铜箔上,放置了一个用于实时温度监测的热面电阻,最终的温度数据经过处理后,会以数字的形式在手机端呈现。
上图为散热器部分,也是散热背夹的核心。中间白色方块为半导体制冷片,它与下方的金属散热板紧密的贴合,散热板背面采用吸入式小风扇对制冷片进行散热,并通过凸起的金属柱增加与空气接触的面积,提高散热效率。
之所以需要为制冷片单独散热,是因为半导体制冷技术是通过P-N型半导体联结成的热电偶对,当它们之间有电流通过时,两端之间就会产生热量的转移,从而产生温差形成冷热端。换而言之,半导体制冷片在工作过程中,一面在制冷,而另一面却在制热,当双方热传递相等时就会达到一个制衡点,为了实现更好的制冷效果,就需要对发热端进行散热。
上图为散热背夹主板,正面用于贴片器件的放置,背面用于接线,并且每个接线端口都进行了注塑保护,避免在制冷过程中所产生的冷凝水流到主板上,造成电路的短路。
在该电路中,主控采用的是一颗具有蓝牙连接功能的MCU,具体型号为泰凌的TLSR8232,并且这枚主控沿用到了黑鲨冰封散热背夹2 Pro中。MCU下方是一颗为主控提供时钟源的24MHz有源晶振。
出于设备安全性与可靠性的考虑,该散热背夹还在电源输入端放置了TVS管,用于规避电源接通瞬间所产生的浪涌电压,防止击穿电子元件。
在电源的主开关下方,使用了一颗韦尔的WL2855降压芯片,将系统中的5V电压源降低为3.3V为主控MCU单独供电。
上图RGB灯带和制冷片的控制电路,从电路设计以及芯片型号来看,这两部分电路非常相似,不同的是RGB灯带控制电路需要额外使用一颗RGB LED驱动芯片,来控制灯光的颜色和闪光的周期。
散热器保护罩设计较为简单,只使用到了一个环形RGB灯带,通过排线与主板连接。
具体的拆解过程可点击下方视频观看。
即使现在很多手机都自带被动散热系统,但由于空间的局限性,在高温天气的应用场景中,依旧会出现发烫的问题。相比之下,通过外挂散热设备来主动降温,能够更好地解决手机发烫问题。
近日,笔者对一款来自黑鲨的冰封散热背夹Pro进行了拆解、测评,并对设备工作原理及设计进行了分析,具体细节见下文。
实测:输出功率、使用体验
首先从外观来看,黑鲨冰封散热背夹Pro采用了极简的外观设计,并通过蓝牙与手机互联的方式,来简化设备物理按键的数量。设备外部只预留了一个Type-C电源接口和一个电源开关按钮。
同时,这款散热背夹配合APP使用,用户还可以根据实际的使用需求,切换不同的散热模式,查看散热背夹当前实时温度,以及调整 RGB灯效设置样式等。
冰封模式(左) 极寒模式(右)
散热背夹的散热效果好不好,与功率大小有着必然的联系,这款散热背夹分别提供了极寒和冰封两种工作模式供用户选择。经笔者实测在极寒模式下,散热背夹的功率在7.3W至8W之间。在冰封模式下,散热背夹的功率在9.1W至9.5W之间。
在未贴合手机单独测评过程中发现,虽然两种工作模式功率差距只有1.5W左右,但降温效果非常明显,从室温25℃降至14摄氏度仅用了20秒,平均每两秒降低1摄氏度。
在游戏使用体验方面,笔者进行了一把7分钟的游戏对局,并在游戏开始前将手机画质效果开至最高,让手机发热量最大化。一把游戏下来,通过APP反馈的数据来看,这款手机背夹的散热效果还是非常不错的,温度能够很好地控制在20℃左右。并且设备重量也不是很重,使用起来并不会累手。但是,在握持体验方面,由于散热背夹体积较大的原因,手指无法充分施展开来,对游戏体验有所影响。
拆解
这款散热背夹主要由手机固定夹、散热器以及散热器保护罩3部分构成。
手机固定夹采用了传统的机械式设计,通过弹簧拉伸的方式固定手机。
手机固定夹是手机与制冷片之间温度传递的媒介,通过面积更大的铜箔与制冷片相接触,进一步散热面积,并通过在铜箔与制冷片之间涂抹大量硅脂的方式,提高冷传递的效果。
同时,为了避免金属铜箔与手机之间摩擦产生划痕,还在两层铜箔的基础上放置了一块柔性的导冷垫,不仅保护了手机不被刮花,还提高了手机与散热背夹的契合度,让手机更好地散热。
为了更直观地体现降温效果,这款散热背夹在最贴近手机侧的散热铜箔上,放置了一个用于实时温度监测的热面电阻,最终的温度数据经过处理后,会以数字的形式在手机端呈现。
上图为散热器部分,也是散热背夹的核心。中间白色方块为半导体制冷片,它与下方的金属散热板紧密的贴合,散热板背面采用吸入式小风扇对制冷片进行散热,并通过凸起的金属柱增加与空气接触的面积,提高散热效率。
之所以需要为制冷片单独散热,是因为半导体制冷技术是通过P-N型半导体联结成的热电偶对,当它们之间有电流通过时,两端之间就会产生热量的转移,从而产生温差形成冷热端。换而言之,半导体制冷片在工作过程中,一面在制冷,而另一面却在制热,当双方热传递相等时就会达到一个制衡点,为了实现更好的制冷效果,就需要对发热端进行散热。
上图为散热背夹主板,正面用于贴片器件的放置,背面用于接线,并且每个接线端口都进行了注塑保护,避免在制冷过程中所产生的冷凝水流到主板上,造成电路的短路。
在该电路中,主控采用的是一颗具有蓝牙连接功能的MCU,具体型号为泰凌的TLSR8232,并且这枚主控沿用到了黑鲨冰封散热背夹2 Pro中。MCU下方是一颗为主控提供时钟源的24MHz有源晶振。
出于设备安全性与可靠性的考虑,该散热背夹还在电源输入端放置了TVS管,用于规避电源接通瞬间所产生的浪涌电压,防止击穿电子元件。
在电源的主开关下方,使用了一颗韦尔的WL2855降压芯片,将系统中的5V电压源降低为3.3V为主控MCU单独供电。
上图RGB灯带和制冷片的控制电路,从电路设计以及芯片型号来看,这两部分电路非常相似,不同的是RGB灯带控制电路需要额外使用一颗RGB LED驱动芯片,来控制灯光的颜色和闪光的周期。
散热器保护罩设计较为简单,只使用到了一个环形RGB灯带,通过排线与主板连接。
具体的拆解过程可点击下方视频观看。
最新内容
手机 |
相关内容
基于穿隧磁阻效应(TMR)的车规级电
基于穿隧磁阻效应(TMR)的车规级电流传感器,车规级,效应,导致,自旋,测量,电动汽车,随着电动汽车的快速发展和智能化驾驶技术的成熟,对美光低功耗内存解决方案助力高通第
美光低功耗内存解决方案助力高通第二代骁龙XR2平台,解决方案,助力,低功耗,内存,美光,第二代,随着虚拟现实(VR)和增强现实(AR)技术的迅猛苹果发布M3系列新款MacBook Pro/iM
苹果发布M3系列新款MacBook Pro/iMac:业界首批PC 3nm芯片,新款,芯片,业界,核心,用户,性能,近日,苹果公司发布了M3系列新款MacBook Pro所有遥不可及,终因AI触手可及
所有遥不可及,终因AI触手可及,出行,平台,无人驾驶汽车,导致,人工智能,学习,人类历史上,有许多事物曾被认为是遥不可及的,然而随着科技什么是单相变压器,单相变压器的基本
什么是单相变压器,单相变压器的基本结构、特点、工作原理、应用、如何安装、常见故障及预防措施,安装,结构,工作原理,导致,确保,用什么是超声波液位传感器,超声波液位
什么是超声波液位传感器,超声波液位传感器的组成、特点、原理、分类、常见故障及预防措施,传感器,分类,选择,导致,脉冲,测量,AM26LV3什么是助推器,助推器的组成、特点、
什么是助推器,助推器的组成、特点、原理、分类、常见故障及预防措施,分类,操作,用于,能力,燃烧室,导致,FDC653N助推器是一种用于增加芯片粘接失效模式和芯片粘接强度提
芯片粘接失效模式和芯片粘接强度提高途径,芯片,模式,失效,控制,界面,导致,芯片粘接是将两个芯片或其他材料通过粘接剂粘接在一起的