首页 / 行业
毫米波的DPD挑战,有源相控阵毫米波通信渐成主流
2022-06-22 08:00:00
在5G新无线电技术标准中,SUB-6GHz频率和毫米波频率都可以用来提高吞吐量。除了降低延迟和提高可靠性,3GPP 5G NR的发展对高数据吞吐量的需求也无疑是其中非常关键的一环。DPD在蜂窝通信系统中也是随处可见,使功率放大器(PA)能够有效地为天线提供最大功率。随着5G使基站中的天线数量增加,频谱变得更加拥挤,DPD开始成为一项关键技术,支持开发经济高效且符合规格要求的蜂窝系统。
作为一种很成熟的技术,DPD数字预失真通常被用于SUB-6GHz通信中,用来提高功率效率,在毫米波中则应用得不那么广泛。原因在于虽然毫米波频率的使用给数据吞吐量的提升带来了许多便利,但是其中的挑战也不那么容易解决。
毫米波应用DPD的挑战在哪?
预失真是PA线性化的“利器”,预失真线性化技术不仅不存在稳定性问题,还有更宽的信号频带,能够处理含多载波的信号。当然DPD本身会受制于时间、以及偏压的变化而变化,通过DPD使PA高度线性化,这也是应用在毫米波上的问题所在。在5G NR中,蜂窝移动被分配了24.25GHz到52.6GHz的毫米波频率,可用频谱范围的扩大带来了单个通道里更高的频率,也就是更高的吞吐量。但链路预算也更为吃紧了,因为高线性度的毫米波PA RF功率很低,而且效率不算高,路径损耗和单个PA的更低功率让链路预算极为吃紧。
如何解决吃紧的链路预算——有源相控阵天线
要解决吃紧的链路预算,必须将功率更准确地用在该用的位置上。有源相控阵天线可以解决此类挑战。毫米波有源相控阵天线与传统的天线相比,波束速度快、方向可控,拥有波束成型和波束转向能力;毫米波有源相控阵天线不含活动部件,会更可靠些,即便阵列中少数天线单元失效,总体性能也不会受到太大影响,可以说集成毫米波有源相控天线的终端是未来毫米波通信的重要发展方向之一。
有源相控阵天线中有许多天线元件,每个元件由低功率放大器驱动来实现,这些元件能增加阵列的总辐射功率。这种解决办法可能唯一的缺点在于,相控阵成本高,但随着MMIC技术的发展,成本也在一步步降低。
目前国外有源相控天线的发展比国内成熟,不管是在核心芯片还是工艺上。ADI是采用了SOI CMOS工艺大大提高了有源波束成型器件的功效并降低了成本。凭借RF集成电路的高度集成,将输入馈入单独的放大器中,放大器后的每个路径通过1:8功率分路器分成八个独立的通道。总辐射功率以及阵列增益的提升,链路预算得以缓解压力,以ADMV4828波束成型器为例,每一类AB PA可提供21 dBm峰值功率,比较其输出功率,PA为峰值功率留出9 dB的裕量,可以满足更多其他方面的需求。
(ADI)
解决链路预算挑战后,在SUB-6GHz和毫米波中使用DPD,根据ADI的测试数据,在毫米波阵列中DPD带来的节能功效并不明显,但是元件数量会大大减少。这意味着在更高的功率输出之外,大大降低阵列硬件成本并带来更多的空间余量。
毫米波有源相控阵技术趋势
纵观市面上的毫米波有源相控阵器件,集成化不断提高是最明显的趋势。其集成化主要集中在芯片和模块化上。通过使用先进封装技术和微系统集成工业,相控阵天线乃至后端射频、数字处理部分都以一个完整的SIP和SoC出现。
瑞萨电子的相控阵有源波束成形IC系列里,每个波束形成IC都包含了多个独立控制的有源通道,满足电子扫描阵列天线(ESA)的元素级波形塑造要求,采用紧凑型IC提供平面BGA或QFN封装,用以实现极小化相位阵列天线。值得一提的是瑞萨的动态阵列电源DAP、阵列传感器ArraySense和高速波控RapidBeam等专有技术可满足5G系统所需的所有波束形成功能,同时在任何硅技术中以高效率实现最高的线性射频输出功率。
(瑞萨)
向更高的频段拓展也是大势所趋,不管是通信领域的Ka波段、Q波段还是雷达领域的X波段、W波段乃至100GHz以上的频段,广阔的应用市场肯定会推动着技术向更高频段发展。毕竟自动驾驶和智能感知领域对这类设备的需求还是相当火热的。
作为一种很成熟的技术,DPD数字预失真通常被用于SUB-6GHz通信中,用来提高功率效率,在毫米波中则应用得不那么广泛。原因在于虽然毫米波频率的使用给数据吞吐量的提升带来了许多便利,但是其中的挑战也不那么容易解决。
毫米波应用DPD的挑战在哪?
预失真是PA线性化的“利器”,预失真线性化技术不仅不存在稳定性问题,还有更宽的信号频带,能够处理含多载波的信号。当然DPD本身会受制于时间、以及偏压的变化而变化,通过DPD使PA高度线性化,这也是应用在毫米波上的问题所在。在5G NR中,蜂窝移动被分配了24.25GHz到52.6GHz的毫米波频率,可用频谱范围的扩大带来了单个通道里更高的频率,也就是更高的吞吐量。但链路预算也更为吃紧了,因为高线性度的毫米波PA RF功率很低,而且效率不算高,路径损耗和单个PA的更低功率让链路预算极为吃紧。
如何解决吃紧的链路预算——有源相控阵天线
要解决吃紧的链路预算,必须将功率更准确地用在该用的位置上。有源相控阵天线可以解决此类挑战。毫米波有源相控阵天线与传统的天线相比,波束速度快、方向可控,拥有波束成型和波束转向能力;毫米波有源相控阵天线不含活动部件,会更可靠些,即便阵列中少数天线单元失效,总体性能也不会受到太大影响,可以说集成毫米波有源相控天线的终端是未来毫米波通信的重要发展方向之一。
有源相控阵天线中有许多天线元件,每个元件由低功率放大器驱动来实现,这些元件能增加阵列的总辐射功率。这种解决办法可能唯一的缺点在于,相控阵成本高,但随着MMIC技术的发展,成本也在一步步降低。
目前国外有源相控天线的发展比国内成熟,不管是在核心芯片还是工艺上。ADI是采用了SOI CMOS工艺大大提高了有源波束成型器件的功效并降低了成本。凭借RF集成电路的高度集成,将输入馈入单独的放大器中,放大器后的每个路径通过1:8功率分路器分成八个独立的通道。总辐射功率以及阵列增益的提升,链路预算得以缓解压力,以ADMV4828波束成型器为例,每一类AB PA可提供21 dBm峰值功率,比较其输出功率,PA为峰值功率留出9 dB的裕量,可以满足更多其他方面的需求。
(ADI)
解决链路预算挑战后,在SUB-6GHz和毫米波中使用DPD,根据ADI的测试数据,在毫米波阵列中DPD带来的节能功效并不明显,但是元件数量会大大减少。这意味着在更高的功率输出之外,大大降低阵列硬件成本并带来更多的空间余量。
毫米波有源相控阵技术趋势
纵观市面上的毫米波有源相控阵器件,集成化不断提高是最明显的趋势。其集成化主要集中在芯片和模块化上。通过使用先进封装技术和微系统集成工业,相控阵天线乃至后端射频、数字处理部分都以一个完整的SIP和SoC出现。
瑞萨电子的相控阵有源波束成形IC系列里,每个波束形成IC都包含了多个独立控制的有源通道,满足电子扫描阵列天线(ESA)的元素级波形塑造要求,采用紧凑型IC提供平面BGA或QFN封装,用以实现极小化相位阵列天线。值得一提的是瑞萨的动态阵列电源DAP、阵列传感器ArraySense和高速波控RapidBeam等专有技术可满足5G系统所需的所有波束形成功能,同时在任何硅技术中以高效率实现最高的线性射频输出功率。
(瑞萨)
向更高的频段拓展也是大势所趋,不管是通信领域的Ka波段、Q波段还是雷达领域的X波段、W波段乃至100GHz以上的频段,广阔的应用市场肯定会推动着技术向更高频段发展。毕竟自动驾驶和智能感知领域对这类设备的需求还是相当火热的。
最新内容
手机 |
相关内容
位移传感器结构类型及工作原理与应
位移传感器结构类型及工作原理与应用,工作原理,类型,结构,位移传感器,常见,效应,FDV302P位移传感器是一种用于测量物体位移或位置的写flash芯片时为什么需要先擦除?
写flash芯片时为什么需要先擦除?,擦除,芯片,充电,初始状态,存储单元,数据,Flash芯片是一种非易失性存储器技术,用于存储数据并实现固射频连接器使用技巧与注意事项
射频连接器使用技巧与注意事项,连接器,选择,频率,类型,连接,传输,射频连接器是一种用于连接射频电路的电子元件,常用于无线通信系统电流互感器作用 电流互感器为什么
电流互感器作用 电流互感器为什么一端要接地?,作用,误差,原因,连接,测量,短路故障,电流互感器(Current Transformer,简称CT)是一种用于半导体主控技术:驱动自动驾驶革命的
半导体主控技术:驱动自动驾驶革命的引擎,自动驾驶,交通,自动驾驶系统,数据,车辆,自动,随着科技的不断进步,自动驾驶技术已经成为现实加特兰毫米波雷达SoC芯片赋能室内
加特兰毫米波雷达SoC芯片赋能室内安防新应用,毫米波雷达,芯片,用于,稳定性,目标,感知,室内安防是一个重要的领域,随着技术的进步和人单相滤波器:从基础到应用的全面解读
单相滤波器:从基础到应用的全面解读,滤波器,能和,噪声,选择,信号,工作原理,TVP5146PFP单相滤波器是一种用于去除电源信号中的杂波和Arbe 4D成像雷达以高分辨率雷达技
Arbe 4D成像雷达以高分辨率雷达技术和先进处理技术消除“幽灵刹车”问题,刹车,成像,分辨率,系统,目标,数据,Arbe 4D成像雷达是一种