首页 / 行业
利用GPU和深度学习算法加速十亿向量相似性搜索
2022-04-08 10:17:00
基于 GPU 的功能, Facebook AI Research 的一个团队开发了一种更快、更有效的 AI 运行相似性搜索的方法。这个 study ,发表于 IEEE 大数据交易 ,创建了一种深度学习算法,能够处理和比较来自媒体的高维数据,速度明显更快,同时与以前的技术一样精确。
在一个数据供应量不断增长的世界中,这项工作有望减轻处理大型库所需的计算能力和时间。
“搜索和索引[高维数据]最直接的技术是蛮力比较,你需要对照数据库中的其他图像检查[每个图像]。这对于包含数十亿载体的集合来说是不切实际的,”研究科莱德和 Facebook 的研究工程师杰夫·约翰逊在一份新闻稿中说。
包含数百万像素和数据点的每幅图像和视频都会产生数十亿个矢量。这些大量的数据对于分析、检测、索引和比较向量非常有价值。计算大型库与依赖于多个超级计算机组件的传统 CPU 算法的相似性也存在问题,从而降低了总体计算时间。
研究人员只使用了四个 GPU 和 CUDA ,设计了一个 多 GPU 到宿主和肛门的算法分析库图像数据点。该方法还压缩数据,使其更容易,从而更快地进行分析。
新算法在 35 分钟内处理了 9500 多万张高维图像。 10 亿个向量的图形计算起来不到 12 小时。根据该研究中的一项比较测试,使用 128 台 CPU 服务器集群处理同一数据库需要 108 。 7 小时,约长 8 。 5 倍。
约翰逊说:“通过将计算完全放在 GPU 上,我们可以利用加速器上更快的内存,而不是处理 CPU 服务器上较慢的内存,甚至传统超级计算机集群中较慢的机器对机器网络互连。”。
研究人员表示,这些方法已经应用于各种各样的任务,包括翻译的语言处理搜索。被称为 Facebook AI 相似性搜索库的方法是 开源 用于实现、测试和比较。
关于作者
Michelle Horton 是 NVIDIA 的高级开发人员通信经理,拥有通信经理和科学作家的背景。她在 NVIDIA 为开发者博客撰文,重点介绍了开发者使用 NVIDIA 技术的多种方式。
审核编辑:郭婷
最新内容
手机 |
相关内容
重庆东微电子推出高性能抗射频干扰
重庆东微电子推出高性能抗射频干扰MEMS硅麦放大器芯片,芯片,推出,算法,抑制,音频,信号,重庆东微电子有限公司最近推出了一款高性能芯片迈向系统化时代:EDA软件的创新
芯片迈向系统化时代:EDA软件的创新之路,时代,芯片,形式,支持,性能,验证,芯片设计是现代科技领域的重要组成部分,它涉及到电子设计自动清华大学研发光电融合芯片,算力超商
清华大学研发光电融合芯片,算力超商用芯片三千余倍,芯片,研发,商用,测试,计算,科学研究,近日,清华大学发布了一项重要科研成果,他们成黑芝麻智能助力亿咖通科技旗下首款
黑芝麻智能助力亿咖通科技旗下首款智能驾驶计算平台成功量产交付,智能驾驶,计算,助力,首款,交付,智能,近年来,智能驾驶技术逐渐成为高精度3D视觉技术,助力工业机器人实
高精度3D视觉技术,助力工业机器人实现汽车零部件高效上下料,工业机器人,助力,视觉,高精度,3D,算法,高精度3D视觉技术在工业机器人上可穿戴传感器能够实现准确的实时检
可穿戴传感器能够实现准确的实时检测,检测,实时,传感器,可穿戴,高精度,数据传输,可穿戴传感器(Wearable Sensors)是一种集成在人体上全极性霍尔芯片LM224DR2G可实现共
全极性霍尔芯片LM224DR2G可实现共享充电宝中位置检测功能,位置,检测,充电,宝中,芯片,输出,全极性霍尔芯片LM224DR2G是一种用于位置探秘英伟达显卡的制造之路 | 英伟
探秘英伟达显卡的制造之路 | 英伟达断供GPU,中国大模型何去何从?,英伟达,模型,中国大,显卡,方案,能力,英伟达(NVIDIA)是全球领先的图形