首页 / 行业
三种不同反向器几何工艺流程变化的效果
2022-04-28 17:35:00
虽然栅极间距(GP)和鳍片间距(FP)的微缩持续为FinFET平台带来更高的性能和更低的功耗,但在5nm及更先进节点上,兼顾寄生电容电阻的控制和实现更高的晶体管性能变得更具挑战。
泛林集团在与比利时微电子研究中心 (imec) 的合作中,使用了SEMulator3D®虚拟制造技术来探索端到端的解决方案,运用电路模拟更好地了解工艺变化的影响。我们首次开发了一种将SEMulator3D与BSIM紧凑型模型相耦合的方法,以评估工艺变化对电路性能的影响。
这项研究的目的是优化先进节点FinFET设计的源漏尺寸和侧墙厚度,以提高速度和降低功耗。为此,我们比较了具有三种不同外延 (epi) 生长形状和源漏Si刻蚀深度的FinFET反向器结构(图1),研究低介电常数材料侧墙厚度变化的影响,并确定了实现最佳性能的FinFET侧墙厚度和源漏外延形状组合。
图1. 三种结构的关键工艺步骤比较
图2对本研究方法进行了图解。我们在建模中使用三种软件:SEMulator3D、BSIM紧凑型建模和Spectre®电路模拟。首先将一个GDS输入文件导入SEMulator3D,以便进行工艺模拟和RC网表提取。然后从SEMulator3D中提取各种数据,包括几何和寄生数据,以创建带说明的RC网表。该网表随后与BSIM紧凑型前段制程 (FEOL) 器件模型相耦合,并被输入到Spectre电路模拟模型。该Spectre模型随后用于模拟正在评估的三种不同反向器的速度和功耗。
图2. 本研究方法的流程图
图3显示了三种结构(在不同的漏极间电压和侧墙厚度下)的功耗与频率的函数关系。我们注意到在不同漏极间电压下,所有外延形状几何都呈类似的功耗-速度趋势:侧墙厚度增加导致功耗降低。每个外延尺寸都有一个可产生最大速度和最佳Reff×Ceff值(有效电阻值x有效电容值)的最佳侧墙厚度。在各种侧墙厚度下,有一个特定的外延形状也提供了最高的整体性能。我们还研究了NMOS和PMOS结构最佳侧墙厚度下三种结构的源漏接入电阻(S/D-R)和栅极到源漏(GT-S/D)的电容,以便更好地了解图3中报告的结果。
图3.三个反向器在漏极电压为0.5V到1V时的功耗-速度比较(a)和放大后的漏极电压等于0.7V时的功耗-速度比较(b)
这种建模方法为FinFET工艺变化对5nm以下器件和电路性能的影响提供了有价值的指导。我们通过RC网表提取将SEMulator3D与BSIM紧凑型建模和Spectre电路模拟相耦合,成功评估和比较了三种不同反向器几何(使用不同侧墙厚度)工艺流程变化的效果,以实现最佳晶体管性能,还探讨了漏极间电压和低介电常数材料侧墙变化对速度和功耗性能的影响。
审核编辑:彭菁最新内容
手机 |
相关内容
台积电1.4nm,有了新进展
台积电1.4nm,有了新进展,台积电,行业,需求,竞争力,支持,芯片,近日,台积电(TSMC)宣布将探索1.4纳米技术,这是一项令人振奋的举措,将有望为ESTC15W芯片A/D、D/A转换的简单使用
STC15W芯片A/D、D/A转换的简单使用,简单使用,转换,芯片,模拟,输入,输出,STC15W系列芯片是一种高性能的单片机芯片,具有丰富的外设资单相滤波器:从基础到应用的全面解读
单相滤波器:从基础到应用的全面解读,滤波器,能和,噪声,选择,信号,工作原理,TVP5146PFP单相滤波器是一种用于去除电源信号中的杂波和美光低功耗内存解决方案助力高通第
美光低功耗内存解决方案助力高通第二代骁龙XR2平台,解决方案,助力,低功耗,内存,美光,第二代,随着虚拟现实(VR)和增强现实(AR)技术的迅猛所有遥不可及,终因AI触手可及
所有遥不可及,终因AI触手可及,出行,平台,无人驾驶汽车,导致,人工智能,学习,人类历史上,有许多事物曾被认为是遥不可及的,然而随着科技阿里平头哥发布首颗SSD主控芯片:镇
阿里平头哥发布首颗SSD主控芯片:镇岳510,平头,芯片,物联网,性能,阿里巴巴,支持,阿里平头哥是指阿里巴巴集团的CTO张建锋,他在宣布了阿安森美宣布其Hyperlux 图像传感器
安森美宣布其Hyperlux 图像传感器系列已集成到瑞萨R-Car V4x平台,平台,到瑞,集成,图像,汽车制造商,辅助功能,安森美(ON Semiconducto黑芝麻智能助力亿咖通科技旗下首款
黑芝麻智能助力亿咖通科技旗下首款智能驾驶计算平台成功量产交付,智能驾驶,计算,助力,首款,交付,智能,近年来,智能驾驶技术逐渐成为