首页 / 行业
NVIDIA Jetson 系列针对CSI摄像头提供Camera SubSystem提高效率
2021-12-24 09:01:00
在最开始介绍 Jetbot 的时候有提到,这套智能小车只使用一个 CSI 摄像头作为全部输入的设备,因为这种设备的体积轻巧、功耗较低,并且 NVIDIA Jetson 系列针对 CSI 摄像头提供了一组 Camera SubSystem 来提高效率,非常适合用在智能车方案上的视频图像输入。下表是各种摄像头的简单比较表,这样就能一目了然地理解 Jetbot 为何挑选 CSI 摄像头作为输入设备。
首先要提示的,Jetson Nano(含2GB)所支持的是 CSI-2 版本接口,早期用在树莓派上 50 元以下的 CSI 接口摄像头是不能使用的,主要以 IMX219 芯片的摄像头为主,价格大约在 100 元以上,因此请勿选购错误。
本文并不花时间去说明 CSI 摄像头的工作原理,主要配合 Jetbot 的安装,以及执行最简单指令去确认您手上的摄像头是否良好可用,否则等整机都装好之后再进行测试,如果遇到不良的摄像头还得再拆卸下来,是一件颇为浪费时间的事情。
将CSI摄像头装到Jetson Nano(含2GB)上 这种接口并不支持即插即用(PnP, Plug and Play)功能,不能像 USB 摄像头可以随时插入 Jetson Nano(含2GB),必须在开机之前就先装好。如果开机后测试发现不成功,就得关机后再检查是否有什么地方安装不正确?或者接触不良的问题,就便利性而言不如 USB 摄像头那么顺手。 安装 CSI 摄像头的接口如下图左方的卡座,要拔取卡笋进行安装时千万小心力度,这个塑料件比较脆弱,一不小心弄断了,不仅无法再安装 CSI 摄像头,也严重影响 Jetson Nano(含2GB)的质保,需要非常小心处理! 卡座上透过一根专属的软排线(如上图右)与 CSI 摄像头进行连接,这个软排线是有方向性的,如上图右所显示,软排线有金属针脚的一面要朝内(核心模块)方向,将排线完整塞进卡座之后,再将卡笋往下压,确保完全压倒底,否则摄像头可能因为排线接触不良而无法正常工作。 请参考“菜鸟手册(2):给 Jetson Nano 安装 CSI 摄像头”(https://cloud.tencent.com/developer/article/1421907)一文,有非常详尽的步骤与动态简图能完整表达过程。总而言之,这个摄像头的安装有些细微之处,需要细心处理。一旦安装测试好之后,也尽量不要拆卸。 由于 Jetbot 会关闭 Ubuntu 图形桌面,因此过去所学到调用 nvarguscamera 指令,去启动 CSI 摄像头并在图形桌面上显示的方法,在这里都不能适用,但是 v4l2-ctl 工具还是能做最基本的检测。 下面的测试都在 Jetbot 上的 Jupyter 环境上进行,也顺便讲解一下 Jupyter 上调用摄像头与显示内容的方法,先熟悉一下这方面的使用是很重要,因为后面所有实验都要用到 CSI 摄像头。 现在从 PC 上的浏览器输入 “:8888” 进入 Jetbot 的 Jupyter 操作界面,然后开启一个命令终端(如下图): 现在先用 v4l2-ctl 工具检查一下 CSI 摄像头的状况,请在终端输入以下指令: 细部参数就不花时间说明,主要让大家知道当有需要的时候,就可以用 v4l2-ctl 这个工具查看细节。 接下去开始用 Jupyter 的代码,来测试 CSI 摄像头的工作状况。首先创建一个新的“Notebook”(如下图步骤),这是 Jupyter 的工作区域。 每次新开的 Notebook 都是如下图的状况,会有一个[ ] 与一个方框: 现在就将下面代码复制到在 Notebook 的方框内里,由于前面“v4l2-ctl”检测到这个摄像头的宽高为(1640, 1232),因此在代码中将摄像头与 widgets 的图形尺寸都设为这两个数字: 然后按一下“Ctrl-Enter”组合键就能执行,正常的话就能在下方看到一个方框显示摄像头所捕捉的动态画面,这样就完成 CSI 摄像头的测试。显示有点小延迟是正常的,毕竟这里选择的是(1640, 1232)尺寸,试试将尺寸都缩小到 1/2 之后,是不是就流畅的多? 如果要停止摄像头播放,就用上面的“+”号添加一个“指令格”,然后在里面输入: 然后用“Ctrl-Enter”执行这个指令,这时候显示画面就处于冻结状态,不会播放显示器所捕捉的内容。 假如想要让摄像头再次执行播放,就在下面再添加一个“指令格”,输入: 按下“Ctrl-Enter”执行,就会看到显示框里的内容又开始执行动态播放了。 由于 Jupyter 并不支持 OpenGL 功能,无法像图形桌面那样直接播放视频,因此在这里需要使用一些固定的技巧,将视频转成图形方式去显示,上面这段代码可以说是 Jetbot 所有实验启动 CSI 摄像头的标准内容。 这个代码中有几个关键的部分: 早期 Jetbot 的摄像头是基于 NVIDIA 的 JetCam 项目,提供对 CSI 与 USB 两类摄像头的支持,不过最新版本中仿佛只对 CSI 摄像头提供支持,并且将底层的代码放在 jetbot/camera 下面的几只 .py 里面。 这使得调用方式变得非常简单,只要将宽与高提供给 Camera.instance (宽,高)就可以,不需要再指定摄像头的编号。 这个模块为 jupyter 提供非常好用的“互动式小部件”,为原本只提供静态显示的教学环境,注入非常生动与多样化互动的功能。 熟悉图形化开发工具的朋友就应该知道,很多这类工具会提供下拉式选项、滑块调整、复选框、文字框这类的小部件,可以组建较为复杂的仪表盘。 在后面控制 Jetbot 车轮的实验中会使用到多种这类小部件,这里只是用到比较简单的 widgets.image 功能,设定输出为“jpeg”格式图像。 这是一个 python 互动式界面里的显示功能,这里就是将 widget.image 输出的 jpeg 图像显示在 Jupyter。 如果从整个英文字去翻译,这个库就被称为“叛徒库”,其实是蛮奇怪的东西。但如果将这个字切割成“trait”与“-let”组合,就能解释成“小特征”的含义,例如 booklet 是小册子、eaglet 是小老鹰的意思。 这个库的功能非常强大,除了能为我们处理“类型检查”之外,还能为动态计算提供预设值、修改属性之后发出更改的事件信号、处理属性值之间的交互影响,为我们简化很多复杂的交错关系。 在上述代码中“camera_link=traitlets.dlink((camera, 'value'), (image, 'value'), transform=bgr8_to_jpeg)”,将摄像头读取的图像与 widgets.image 所创建的 image 对象产生动态关联,并将摄像头图形执行“bgr8_to_jpeg”转换,存放到 image 里,最后再由 display(image)显示出来。 至于 camera_link 物件就能在后面透过.link()与.unlink()执行开关人任务,以实现“暂停”与“再启动”的功能。 这样我们对 Jetbot 摄像头的调用与使用,就有个初步的了解,在后面实验中就能更清楚的感受到这些功能的使用。 原文标题:NVIDIA Jetson Nano 2GB 系列文章(43):CSI摄像头安装与测试 文章出处:【微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。测试CSI摄像头的运行
#如果是Docker版,请先安装v4l-utils工具aptinstallv4l-utils#执行检测指令v4l2-ctl--list-devices#如果检测到/dev/video0,继续检测这个设备的细部参数v4l2-ctl --device=/dev/video0 --all
fromjetbotimportCamera,bgr8_to_jpegimportipywidgets.widgetsaswidgetsfromIPython.displayimportdisplayimporttraitletscamera=Camera.instance(width=1640,height=1232)image=widgets.Image(format='jpeg',width=1640,height=1232)camera_link=traitlets.dlink((camera,'value'),(image,'value'),transform=bgr8_to_jpeg)display(image)
camera_link.unlink()
camera_link.link()
代码解说
1. jetbot的Camera模块:
2. ipywidgets:
3. iPython.display:
4. traitlets:
最新内容
手机 |
相关内容
台积电1.4nm,有了新进展
台积电1.4nm,有了新进展,台积电,行业,需求,竞争力,支持,芯片,近日,台积电(TSMC)宣布将探索1.4纳米技术,这是一项令人振奋的举措,将有望为ESTC15W芯片A/D、D/A转换的简单使用
STC15W芯片A/D、D/A转换的简单使用,简单使用,转换,芯片,模拟,输入,输出,STC15W系列芯片是一种高性能的单片机芯片,具有丰富的外设资美光低功耗内存解决方案助力高通第
美光低功耗内存解决方案助力高通第二代骁龙XR2平台,解决方案,助力,低功耗,内存,美光,第二代,随着虚拟现实(VR)和增强现实(AR)技术的迅猛新思科技与Arm持续加速先进节点定
新思科技与Arm持续加速先进节点定制芯片设计,芯片,节点,核心,解决方案,功耗,工具,新思科技(Synopsys)是一家全球领先的电子设计自动化高通骁龙8 Gen4曝光:升级台积电3nm
高通骁龙8 Gen4曝光:升级台积电3nm CPU回归自研架构,升级,台积电,优化,能和,功耗,处理器,高通骁龙8 Gen4是高通公司即将推出的一款NE清华研制出首个全模拟光电智能计算
清华研制出首个全模拟光电智能计算芯片ACCEL,芯片,智能计算,模拟,清华,混合,研发,清华大学最近成功研制出了一款全模拟光电智能计算如何利用示波器快速测量幅频特性?有
如何利用示波器快速测量幅频特性?有何注意事项?,测量,示波器,连接,输入,信号,频率,利用示波器快速测量幅频特性是一种常用的方法,可以什么是SoC处理器,SoC处理器的组成、
什么是SoC处理器,SoC处理器的组成、特点、原理、分类、操作规程及发展趋势,处理器,分类,发展趋势,低功耗,功耗,用于,SoC(System on a