首页 / 行业
探究SMT对计算密集型workload的效果
2021-10-28 15:40:00
宋老师的SMT测试很有意思,但是编译内核涉及的因素太多了,包括访问文件系统等耗时受到存储器性能的影响,难以估算,因此很难评判SMT对性能的提升如何。
为了探究SMT对计算密集型workload的效果,我自己写了一个简单的测试程序。
使用pthread开多个线程,每个线程分别计算斐波那契数列第N号元素的值。每个线程计算斐波那契数列时除线程的元数据外只分配两个unsigned long变量,由此避免过高的内存开销。
workload的详细代码和测试脚本在[https://github.com/HongweiQin/smt_test]
毫无疑问,这是一个计算密集型负载,我在自己的笔记本上运行,配置如下(省略了一些不重要的项目):
lscpu
Architecture: x86_64
12 :
CPU(s) list: 0-11
per core: 2
per socket: 6
1 :
NUMA node(s): 1
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
L1d cache: 192 KiB
L1i cache: 192 KiB
L2 cache: 1.5 MiB
L3 cache: 12 MiB
可以看到笔记本有一个Intel i7的处理器,6核12线程。经查,CPU0和CPU6共用一个Core,CPU1和CPU7共用一个Core,以此类推。
以下的测试(Test 1-5)中,每个线程分别计算斐波那契数列第40亿号元素的数值。
Test1:采用默认配置,开12线程进行测试。测试结果为总耗时45.003s。
qhw@qhw-laptop:~/develop/smt_test$ time ./smt_test -f 4000000000
threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=32
real0m45.003s
user7m12.953s
sys0m0.485s
Test2:把smt关掉,同样的测试方法(12线程)。总耗时为25.733s。
qhw@qhw-laptop:~/develop/smt_test$ cat turnoff_smt.sh
echo "turn off smt"
sudo sh -c 'echo off > /sys/devices/system/cpu/smt/control'
qhw@qhw-laptop:~/develop/smt_test$ ./turnoff_smt.sh
turn off smt
qhw@qhw-laptop:~/develop/smt_test$ time ./smt_test -f 4000000000
threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=32
real0m25.733s
user2m23.525s
sys0m0.116s
对,你没看错。同样的workload,如果关掉smt,总耗时还变少了。Intel诚不欺我!
Test3:再次允许smt,但是将程序限制在三个物理Core上运行,则总耗时为34.896s。
qhw@qhw-laptop:~/develop/smt_test$ ./turnon_smt.sh
turn on smt
qhw@qhw-laptop:~/develop/smt_test$ time taskset -c 0-2,6-8 ./smt_test -f 4000000000
threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=32
real0m34.896s
user3m17.033s
sys0m0.028s
Test3相比于Test1用了更少的Core,反而更快了。
为什么在Test2和3会出现这样违反直觉的结果?
猜想:Cache一致性在作怪!
图1测试程序的main函数会分配一个含有T(T=nr_threads)个元素的`struct thread_info`类型的数组,并分别将每个元素作为参数传递给每个计算线程使用。`struct thread_info`定义如下:
struct thread_info {
pthread_t thread_id;
int thread_num;
unsigned long res[2];
};
结构体中的res数组用于计算斐波那契数列,因此会被工作线程频繁地写。
注意到,sizeof(struct thread_info)为32,而我的CPU的cacheline大小为64B!这意味着什么?
如果Thread 0在Core 0上运行,则它会频繁写tinfo[0],Thread 1在Core 1上运行,则它会频繁写tinfo[1]。
这意味着,当Thread 0写tinfo[0]时,它其实是写入了Core 0上L1 Cache的Cacheline。同样的,当Thread 1写tinfo[1]时,它其实是写入了Core 1上L1 Cache的Cacheline。此时,由于Core 1上的Cacheline并非最新,因此CPU需要首先将Core 0中的Cacheline写入多核共享的L3 Cache甚至是内存中,然后再将其读入Core 1的L1 Cache中,最后再将Thread 1的数据写入。此时,由于Cache 0中的数据并非最新,Cacheline会被无效化。由此可见,如果程序一直这样运行下去,这一组数据需要在Cache 0和1之间反复跳跃,占用较多时间。
这个猜想同样可以解释为什么使用较少的CPU可以加速程序运行。原因是当使用较少的CPU时,多线程不得不分时共用CPU,如果Thread 0和Thread 1分时共用了同一个CPU,则不需要频繁将Cache无效化,程序运行时间也就缩短了。
验证猜想:增加内存分配粒度!
对程序进行修改后,可以使用`-g alloc_granularity`参数设定tinfo结构体的分配粒度。使用4KB为粒度进行分配,再次进行测试:
Test4:12线程,开启SMT,分配粒度为4096。总耗时为13.193s,性能相比于Test1的45.003s有了质的提升!
qhw@qhw-laptop:~/develop/smt_test$ time ./smt_test -f 4000000000 -g 4096
threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096
real0m13.193s
user2m31.091s
sys0m0.217s
Test5:在Test4的基础上限制只能使用3个物理Core。总耗时为24.841s,基本上是Test4的两倍。这说明在这个测试下,多核性能还是线性可扩展的。
qhw@qhw-laptop:~/develop/smt_test$ time taskset -c 0-2,6-8 ./smt_test -f 4000000000 -g 4096
threads_num=12, fibonacci_max=4000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096
real0m24.841s
user2m26.253s
sys0m0.032s
超线程SMT究竟可以快多少?
表格和结论:
测试名 | 硬件配置 | 运行时间(s) |
Test6 | “真”6核 | 38.562 |
Test7 | “假”6核 | 58.843 |
Test8 | “真”3核 | 73.175 |
测试使用的是6个工作线程。为了减少误差,增加一点运行时间,每个线程计算斐波那契数列第200亿项的值。
对比Test6和7,可以看到SMT的提升大概在52.6%左右。
测试记录:
Test6:别名“真”6核,使用6个关闭了SMT的物理核进行计算。总耗时为38.562s。
Test7:别名“假”6核,使用3个开启了SMT的物理核进行计算。总耗时为58.843s。
Test8:别名“真”3核,使用3个关闭了SMT的物理核进行计算。总耗时为1m13.175s。
qhw@qhw-laptop:~/develop/smt_test$ cat test.sh
fibonacci=20000000000
sudo printf ""
./turnoff_smt.sh
time ./smt_test -f $fibonacci -g 4096 -t 6
./turnon_smt.sh
time taskset -c 0-2,6-8 ./smt_test -f $fibonacci -g 4096 -t 6
./turnoff_smt.sh
time taskset -c 0-2,6-8 ./smt_test -f $fibonacci -g 4096 -t 6
./turnon_smt.sh
qhw@qhw-laptop:~/develop/smt_test$ ./test.sh
turn off smt
threads_num=6, fibonacci_max=20000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096
real0m38.562s
user3m50.786s
sys0m0.000s
turn on smt
threads_num=6, fibonacci_max=20000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096
real0m58.843s
user5m53.018s
sys0m0.005s
turn off smt
threads_num=6, fibonacci_max=20000000000, should_set_affinity=0, should_inline=1, alloc_granularity=4096
real1m13.175s
user3m39.486s
sys0m0.008s
turn on smt
责任编辑:haq
最新内容
手机 |
相关内容
光耦仿真器简介和优势
光耦仿真器简介和优势,仿真器,参数,接收器,设计方案,耦合,器件,光耦仿真器是一种用于模拟光耦合器件的工具,它可以帮助工程师在设计芯片迈向系统化时代:EDA软件的创新
芯片迈向系统化时代:EDA软件的创新之路,时代,芯片,形式,支持,性能,验证,芯片设计是现代科技领域的重要组成部分,它涉及到电子设计自动清华大学研发光电融合芯片,算力超商
清华大学研发光电融合芯片,算力超商用芯片三千余倍,芯片,研发,商用,测试,计算,科学研究,近日,清华大学发布了一项重要科研成果,他们成聊聊芯片中的负压产生机理及其应用
聊聊芯片中的负压产生机理及其应用,芯片,细胞,用于,测量,生物,结构,芯片中的负压是指在芯片内部产生的负压环境。在某些应用中,负压苹果发布M3系列新款MacBook Pro/iM
苹果发布M3系列新款MacBook Pro/iMac:业界首批PC 3nm芯片,新款,芯片,业界,核心,用户,性能,近日,苹果公司发布了M3系列新款MacBook Pro阿里平头哥发布首颗SSD主控芯片:镇
阿里平头哥发布首颗SSD主控芯片:镇岳510,平头,芯片,物联网,性能,阿里巴巴,支持,阿里平头哥是指阿里巴巴集团的CTO张建锋,他在宣布了阿安森美宣布其Hyperlux 图像传感器
安森美宣布其Hyperlux 图像传感器系列已集成到瑞萨R-Car V4x平台,平台,到瑞,集成,图像,汽车制造商,辅助功能,安森美(ON Semiconducto黑芝麻智能助力亿咖通科技旗下首款
黑芝麻智能助力亿咖通科技旗下首款智能驾驶计算平台成功量产交付,智能驾驶,计算,助力,首款,交付,智能,近年来,智能驾驶技术逐渐成为