首页 / 行业
关于Python对交通路口的红绿灯进行颜色检测
2021-10-13 09:32:00
转自|Python联盟
1.视频读取
首先把视频读取进来,因为我测试的视频是4k的所以我用resize调整了一下视频的分辨大小
cap = cv2.VideoCapture('video/小路口.mp4')
while True:
ret,frame = cap.read()
if ret == False:
break
frame = cv2.resize(frame,(1920,1080))
cv2.imshow('frame',frame)
c = cv2.waitKey(10)
if c==27:
break
imshow()
2.截取roi区域
截取roi的区域,也就是说,为了避免多余的干扰因素我们要把红绿灯的位置给截取出来
截取后的roi
3.转换hsv颜色空间
HSV颜色分量范围
(详细参考:https://www.cnblogs.com/wangyblzu/p/5710715.html)
一般对颜色空间的图像进行有效处理都是在HSV空间进行的,然后对于基本色中对应的HSV分量需要给定一个严格的范围,下面是通过实验计算的模糊范围(准确的范围在网上都没有给出)。H: 0— 180
S: 0— 255
V: 0— 255
此处把部分红色归为紫色范围(如下图所示):
上面是已给好特定的颜色值,如果你的颜色效果不佳,可以通过python代码来对min和max值的微调,用opencv中的api来获取你所需理想的颜色,可以复制以下代码来进行颜色的调整。
1.首先你要截取roi区域的一张图片
2.读取这张图然后调整颜色值
颜色调整代码如下:
(详细参考:https://www.bilibili.com/video/BV16K411W7x9)
import cv2
import numpy as np
def empty(a):
pass
def stackImages(scale,imgArray):
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range ( 0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor= np.hstack(imgArray)
ver = hor
return ver
#读取的图片路径
path = './green.webp'
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars",640,240)
cv2.createTrackbar("Hue Min","TrackBars",0,179,empty)
cv2.createTrackbar("Hue Max","TrackBars",19,179,empty)
cv2.createTrackbar("Sat Min","TrackBars",110,255,empty)
cv2.createTrackbar("Sat Max","TrackBars",240,255,empty)
cv2.createTrackbar("Val Min","TrackBars",153,255,empty)
cv2.createTrackbar("Val Max","TrackBars",255,255,empty)
while True:
img = cv2.imread(path)
imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
h_min = cv2.getTrackbarPos("Hue Min","TrackBars")
h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")
s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")
s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")
v_min = cv2.getTrackbarPos("Val Min", "TrackBars")
v_max = cv2.getTrackbarPos("Val Max", "TrackBars")
print(h_min,h_max,s_min,s_max,v_min,v_max)
lower = np.array([h_min,s_min,v_min])
upper = np.array([h_max,s_max,v_max])
mask = cv2.inRange(imgHSV,lower,upper)
imgResult = cv2.bitwise_and(img,img,mask=mask)
imgStack = stackImages(0.6,([img,imgHSV],[mask,imgResult]))
cv2.imshow("Stacked Images", imgStack)
cv2.waitKey(1)
运行代码后调整的结果(如下图所示),很明显可以看到绿色已经被获取到。
4.二值图像颜色判定
因为图像是二值的图像,所以如果图像出现白点,也就是255,那么就取他的max最大值255,视频帧的不断变化然后遍历每个颜色值
red_color = np.max(red_blur)
green_color = np.max(green_blur)
if red_color == 255:
print('red')
elif green_color == 255:
print('green')
5.颜色结果画在图像上
用矩形框来框选出红绿灯区域
cv2.rectangle(frame,(1020,50),(1060,90),(0,0,255),2) #按坐标画出矩形框
cv2.putText(frame,"red",(1020,40),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2)#显示red文本信息
6.完整代码
编辑:jqimport cv2
import numpy as np
cap = cv2.VideoCapture('video/小路口.mp4')
while True:
ret,frame = cap.read()
if ret == False:
break
frame = cv2.resize(frame,(1920,1080))
#截取roi区域
roiColor = frame[50:90,950:1100]
#转换hsv颜色空间
hsv = cv2.cvtColor(roiColor,cv2.COLOR_BGR2HSV)
#red
lower_hsv_red = np.array([157,177,122])
upper_hsv_red = np.array([179,255,255])
mask_red = cv2.inRange(hsv,lowerb=lower_hsv_red,upperb=upper_hsv_red)
#中值滤波
red_blur = cv2.medianBlur(mask_red, 7)
#green
lower_hsv_green = np.array([49,79,137])
upper_hsv_green = np.array([90,255,255])
mask_green = cv2.inRange(hsv,lowerb=lower_hsv_green,upperb=upper_hsv_green)
#中值滤波
green_blur = cv2.medianBlur(mask_green, 7)
#因为图像是二值的图像,所以如果图像出现白点,也就是255,那么就取他的max最大值255
red_color = np.max(red_blur)
green_color = np.max(green_blur)
#在red_color中判断二值图像如果数值等于255,那么就判定为red
if red_color == 255:
print('red')
#。。。这是我经常会混淆的坐标。。。就列举出来记一下。。。
# y y+h x x+w
#frame[50:90,950:1100]
# x y x+w y+h
cv2.rectangle(frame,(1020,50),(1060,90),(0,0,255),2) #按坐标画出矩形框
cv2.putText(frame, "red", (1020, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255),2)#显示red文本信息
#在green_color中判断二值图像如果数值等于255,那么就判定为green
elif green_color == 255:
print('green')
cv2.rectangle(frame,(1020,50),(1060,90),(0,255,0),2)
cv2.putText(frame, "green", (1020, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0),2)
cv2.imshow('frame',frame)
red_blur = cv2.resize(red_blur,(300,200))
green_blur = cv2.resize(green_blur,(300,200))
cv2.imshow('red_window',red_blur)
cv2.imshow('green_window',green_blur)
c = cv2.waitKey(10)
if c==27:
break
最新内容
手机 |
相关内容
豪威发布新款 4K 分辨率图像传感器
豪威发布新款 4K 分辨率图像传感器,适用于安防摄像头,分辨率,新款,区域,像素,运行,图像,豪威科技最近发布了一款全新的4K分辨率BAS70可穿戴传感器能够实现准确的实时检
可穿戴传感器能够实现准确的实时检测,检测,实时,传感器,可穿戴,高精度,数据传输,可穿戴传感器(Wearable Sensors)是一种集成在人体上全极性霍尔芯片LM224DR2G可实现共
全极性霍尔芯片LM224DR2G可实现共享充电宝中位置检测功能,位置,检测,充电,宝中,芯片,输出,全极性霍尔芯片LM224DR2G是一种用于位置森萨塔推出首款经UL认证的A2L制冷
森萨塔推出首款经UL认证的A2L制冷剂泄漏检测传感器,检测,首款,认证,森萨塔,推出,传感器,森萨塔是一家专注于制冷和空调技术的领先公智能安全帽功能-EIS智能防抖摄像头
智能安全帽功能-EIS智能防抖摄像头4G定位生命体征监测气体检测,智能,监测,生命体征,定位,检测,4G,能安全帽是一种结合了多种智能技一种基于聚合物的化学电阻式传感器
一种基于聚合物的化学电阻式传感器使患者检测更容易,使患,传感器,检测,用于,标志物,尿液,基于聚合物的化学电阻式传感器是一种用于什么是微波射频器,微波射频器的组成
什么是微波射频器,微波射频器的组成、特点、原理、分类、常见故障及预防措施,分类,检测,幅度,工作原理,信号,传输,L293DD013TR微波射什么是硅光电三极管,硅光电三极管的
什么是硅光电三极管,硅光电三极管的基本结构、优缺点、工作原理、应用、识别方法、检测、如何选用及发展历程,三极管,识别,工作原理