首页 / 行业
光子芯片,突破摩尔定律的蹊径?
2021-11-26 09:40:00
提到人工智能,最先想到的参数往往是算力。无论是传统的CPU、GPU还是FPGA或ASIC加速卡,都在竭尽所能地想要成为“算力怪兽”,满足机器学习中大规模数据集的处理和云端AI服务在计算上的需求。
然而在目前的AI世界里,硬件都基于传统的数字电子架构,虽然已经有不少厂商在准备跳出冯诺依曼架构的限制,比如开发神经形态加速器等。但它们并没有跳出电子传输速率上的限制,因此不仅处理器主频上仍然受限,要想实现百亿亿级乃至千亿亿级的算力,也只能从增加系统规模上入手。
在这种困境下,从光子学出发的方案正在不断涌现,硅光技术让CMOS制造高集成的光子芯片成为了可能。光子芯片基本都是基于马赫-曾德干涉仪(MZI)制作的,用光信号来进行线性计算,不仅没有复杂的逻辑门,在传输上的能耗也远小于电信号。
不少研究人员都在近年发表了在光学计算的突破,也有少数公司在这个方向发力,打算以全新的架构来跳出这些限制,让AI与神经网络运算更进一步,甚至是打破传统的摩尔定律。
Lightmatter
Envise / Lightmatter
专注于AI光子芯片的初创公司Lightmatter在今年推出了Envise,首个通用AI光子加速器,也是去年在Hot chips上发布的Mars原型芯片的改进版。该加速器结合了光电系统,从他们的芯片构造中也可以看出,除了光子核以外,还包含了图形处理器、RISC核心和SRAM。Envise支持INT8、INT16和bfloat16三种数字格式,也支持ReLU、GELU和sigmoid等神经网络中常见的激活函数。
Envise服务器构造 / Lightmatter
据Lightmatter给出的数据,以16个Envise芯片和2个AMD EPYC 7002芯片组成的4-U服务器,仅有3kW的功耗,在Resnet-50模型的测试结果中,推理速度却是英伟达DGX-A100的四倍,而DGX-A100的最高功耗可是有6.5kW。
为了解决扩展性的问题,Lightmatter也在推出了自己的高速互联技术Passage。Passage是一种晶圆级可编程的光子互联技术,让异构芯片以大带宽和高能效互相通信,支持CPU、内存和专用加速器。Lightmatter宣称Passage比现有的芯片互联方案要快上百倍,芯片间最大的传输延迟仅有2ns。
Lightelligence
除了国外的Lightmatter以外,国内也有一家专注于光子芯片的公司Lightelligence(曦智科技)。成立一年后,曦智科技就在2019年正式发布了全球首款光子芯片原型板卡,处理MINIST数据集的准确率达到97%以上。据了解,曦智科技目前主要的技术方案专注于光计算和光传输,以高集成度的光子芯片去辅助现有的数字电子芯片,支持到更快的机器学习运算,数字电子芯片负责简单的逻辑运算,实现高算力的同时做到低功耗。
曦智科技CEO沈亦晨在去年的EmTech China大会上表示,光子芯片技术可以更快实现产业化,因为光子芯片对制程的依赖不强,因此甚至可以用28nm的芯片做到7nm芯片的性能。从这点来看,光子芯片或许也是一个摆脱制程受限的发力方向。根据其官网的消息,曦智科技目前正在与早期客户紧密合作,预计在2022年开始光学AI加速的正式部署。
光子卷积加速器
今年1月,来自澳大利亚的几名研究人员在《自然》杂志上发表了一篇名为《用于光学神经网络的11 TOPS光学卷积加速器》的文章。卷积神经网络(CNN)启发自生物视觉皮层系统,这种神经网络提取了原始数据的层次特征,极大降低了网络参数的复杂度,提高了预测的准确性。CNN已经在计算机视觉、语音识别和医疗诊断中获得了广泛的应用,但仍被电子架构的性能给限制。
这篇文章中的研究人员展示了一个通用的光学向量卷积加速器。该加速器集成了克尔光频梳提供的大量波长通道,实现了11 TOPS的运算速度,也可以同时生成8-bit分辨率25万像素图像的卷积,足以用于人脸图像识别。研究人员还利用相同的硬件,依次组成了一个具有10个输出神经元的深度光学CNN,完成了500张MINIST手写数字图片的识别,准确率达到88%以上。
结语
除了以上提到的几家公司和研究外,市场上还有不少开始攻克光子芯片的公司,比如受到比尔盖茨投资的初创企业Luminous Computing,不过其CEO Marcus Gomez在2019年的一次采访中提到,其产品预计要在2022年至2025年的区间内才会面世。英特尔也在今年公布了两份相关专利,其中之一便是将光子加速器与Xeon核心异构集成。
目前光子芯片依然在走光电结合的方向,光学计算主要是为神经网络等应用起到辅助加速。这是因为受到光学元件的限制,尤其是马MZI的布线特点,要想实现MZI互联的话,就很难兼顾尺寸了,所以全光子的方案在扩展性上还是要差上一筹。且我们平常接触到的多为数字信号,少不了光电转换的过程,因此光子芯片的成功归根结底还是需要光电工程师的共同努力。至于通用计算什么时候能用上光子芯片,仍是一个未知数。
然而在目前的AI世界里,硬件都基于传统的数字电子架构,虽然已经有不少厂商在准备跳出冯诺依曼架构的限制,比如开发神经形态加速器等。但它们并没有跳出电子传输速率上的限制,因此不仅处理器主频上仍然受限,要想实现百亿亿级乃至千亿亿级的算力,也只能从增加系统规模上入手。
在这种困境下,从光子学出发的方案正在不断涌现,硅光技术让CMOS制造高集成的光子芯片成为了可能。光子芯片基本都是基于马赫-曾德干涉仪(MZI)制作的,用光信号来进行线性计算,不仅没有复杂的逻辑门,在传输上的能耗也远小于电信号。
不少研究人员都在近年发表了在光学计算的突破,也有少数公司在这个方向发力,打算以全新的架构来跳出这些限制,让AI与神经网络运算更进一步,甚至是打破传统的摩尔定律。
Lightmatter
Envise / Lightmatter
专注于AI光子芯片的初创公司Lightmatter在今年推出了Envise,首个通用AI光子加速器,也是去年在Hot chips上发布的Mars原型芯片的改进版。该加速器结合了光电系统,从他们的芯片构造中也可以看出,除了光子核以外,还包含了图形处理器、RISC核心和SRAM。Envise支持INT8、INT16和bfloat16三种数字格式,也支持ReLU、GELU和sigmoid等神经网络中常见的激活函数。
Envise服务器构造 / Lightmatter
据Lightmatter给出的数据,以16个Envise芯片和2个AMD EPYC 7002芯片组成的4-U服务器,仅有3kW的功耗,在Resnet-50模型的测试结果中,推理速度却是英伟达DGX-A100的四倍,而DGX-A100的最高功耗可是有6.5kW。
为了解决扩展性的问题,Lightmatter也在推出了自己的高速互联技术Passage。Passage是一种晶圆级可编程的光子互联技术,让异构芯片以大带宽和高能效互相通信,支持CPU、内存和专用加速器。Lightmatter宣称Passage比现有的芯片互联方案要快上百倍,芯片间最大的传输延迟仅有2ns。
Lightelligence
除了国外的Lightmatter以外,国内也有一家专注于光子芯片的公司Lightelligence(曦智科技)。成立一年后,曦智科技就在2019年正式发布了全球首款光子芯片原型板卡,处理MINIST数据集的准确率达到97%以上。据了解,曦智科技目前主要的技术方案专注于光计算和光传输,以高集成度的光子芯片去辅助现有的数字电子芯片,支持到更快的机器学习运算,数字电子芯片负责简单的逻辑运算,实现高算力的同时做到低功耗。
曦智科技CEO沈亦晨在去年的EmTech China大会上表示,光子芯片技术可以更快实现产业化,因为光子芯片对制程的依赖不强,因此甚至可以用28nm的芯片做到7nm芯片的性能。从这点来看,光子芯片或许也是一个摆脱制程受限的发力方向。根据其官网的消息,曦智科技目前正在与早期客户紧密合作,预计在2022年开始光学AI加速的正式部署。
光子卷积加速器
今年1月,来自澳大利亚的几名研究人员在《自然》杂志上发表了一篇名为《用于光学神经网络的11 TOPS光学卷积加速器》的文章。卷积神经网络(CNN)启发自生物视觉皮层系统,这种神经网络提取了原始数据的层次特征,极大降低了网络参数的复杂度,提高了预测的准确性。CNN已经在计算机视觉、语音识别和医疗诊断中获得了广泛的应用,但仍被电子架构的性能给限制。
这篇文章中的研究人员展示了一个通用的光学向量卷积加速器。该加速器集成了克尔光频梳提供的大量波长通道,实现了11 TOPS的运算速度,也可以同时生成8-bit分辨率25万像素图像的卷积,足以用于人脸图像识别。研究人员还利用相同的硬件,依次组成了一个具有10个输出神经元的深度光学CNN,完成了500张MINIST手写数字图片的识别,准确率达到88%以上。
结语
除了以上提到的几家公司和研究外,市场上还有不少开始攻克光子芯片的公司,比如受到比尔盖茨投资的初创企业Luminous Computing,不过其CEO Marcus Gomez在2019年的一次采访中提到,其产品预计要在2022年至2025年的区间内才会面世。英特尔也在今年公布了两份相关专利,其中之一便是将光子加速器与Xeon核心异构集成。
目前光子芯片依然在走光电结合的方向,光学计算主要是为神经网络等应用起到辅助加速。这是因为受到光学元件的限制,尤其是马MZI的布线特点,要想实现MZI互联的话,就很难兼顾尺寸了,所以全光子的方案在扩展性上还是要差上一筹。且我们平常接触到的多为数字信号,少不了光电转换的过程,因此光子芯片的成功归根结底还是需要光电工程师的共同努力。至于通用计算什么时候能用上光子芯片,仍是一个未知数。
最新内容
手机 |
相关内容
重庆东微电子推出高性能抗射频干扰
重庆东微电子推出高性能抗射频干扰MEMS硅麦放大器芯片,芯片,推出,算法,抑制,音频,信号,重庆东微电子有限公司最近推出了一款高性能写flash芯片时为什么需要先擦除?
写flash芯片时为什么需要先擦除?,擦除,芯片,充电,初始状态,存储单元,数据,Flash芯片是一种非易失性存储器技术,用于存储数据并实现固DigiKey 推出《超越医疗科技》视频
DigiKey 推出《超越医疗科技》视频系列的第一季,推出,医疗科技,健康,需求,产品,诊断,全球供应品类丰富、发货快速的现货技术元器件华为公开半导体芯片专利:可提高三维
华为公开半导体芯片专利:可提高三维存储器的存储密度,专利,存储密度,存储器,芯片,存储单元,调整,华为是全球领先的信息与通信技术解新一代8通道脑电采集芯片研制成功,
新一代8通道脑电采集芯片研制成功,铠侠与西部数据已中止合并谈判,合并,芯片,脑电,新一代,通道,产品,近日,一项重要的科技突破在全球范加特兰毫米波雷达SoC芯片赋能室内
加特兰毫米波雷达SoC芯片赋能室内安防新应用,毫米波雷达,芯片,用于,稳定性,目标,感知,室内安防是一个重要的领域,随着技术的进步和人电容式触摸按键屏中应用的高性能触
电容式触摸按键屏中应用的高性能触摸芯片,芯片,位置,触摸屏,能力,响应,用户,电容式触摸按键屏(Capacitive Touch Key Screen)是一种常台积电1.4nm,有了新进展
台积电1.4nm,有了新进展,台积电,行业,需求,竞争力,支持,芯片,近日,台积电(TSMC)宣布将探索1.4纳米技术,这是一项令人振奋的举措,将有望为E