首页 / 行业
单芯光纤传输极限,光通讯领域的摩尔定律?
2021-01-14 09:00:00
一篇探讨光纤通讯发展的文章引起了业内热议,国内有不少媒体平台也转发了这则新闻。文章可以基本上简单概括如下:光纤(optical fiber)通信网容量不足,单芯光纤传输极限的问题已经迫在眉睫,而未来技术突破口则是多芯光纤,在这一领域,日本企业的研究开发走在世界前列。
文章虽然引用了日本“情报通信研究机构”(NICT,日本总务省的下属机构)和日本相关知识产权部门的一些数据,但很遗憾并未能准确报道“多芯”光纤技术的通用学术指称——光空分复用技术(MCF),日本有关研究光通讯的公司的研发力度,确实是个值得关注的现象。
单芯光纤传输极限——光通讯领域的摩尔定律?
文中提到的一个基本假设在业内也算是一个勉强的共识,即随着5G技术的发展,原来单芯光纤每5年增长10倍,而未来5年再增10倍的可能性将非常小,意味着其无力承受极限即将到来(目前单芯光纤传输系统的信道容量已经提升至了100TB/s),从现实性上讲,这比摩尔定律“生与死”的讨论更接近具体实践反馈的零界点。
50年前,光纤通讯领域的前辈们其实就已经预感到了这一天迟早会到来,也逐渐构建出多套技术突破应对矩阵模型,其中一条比较典型的路径就是光空分复用技术。上世纪70年代提出来的未来构想,用同一个包层内含多个纤芯的光纤预制棒拉制而成,其包层外形是圆柱体就是目前光空分复用技术的雏形,随着集成光学和光纤传感技术的发展,“Multicore(多核)”新一代光纤的商用化才真正被提上日程。
面对5G智能手机和PC机性能的提升,视频传输越来越成为下一代网络传输载体的主要内容,MCF技术商业化过程中依然面临着几个重要难题,比如上述新闻中也提到了这一点:“要准确传输光信号,有必要避免其他信号的干扰,但一根光纤的直径只有0.125毫米,跟头发的粗细差不多。因此,纤芯之间的间隔只有0.05毫米左右,与从相邻纤芯泄漏的光信号产生干扰成为此前的课题。”
所以光空分复用技术用车辆与道路的关系这个比喻也不完全恰当,建设的道路多了,所以能在道路上跑的车和运输量会相应大幅增加,但光纤通讯的难题是道路上车辆增加之后的互相干扰,会导致道路通行的拥堵,用业界行话来表述,就是芯间耦合与串扰。找到了纤内芯间串扰抑制方法的突破点,是解决多芯光纤阿基里斯之踵的关键。
而某些日本企业之所以被众多媒体认定为全球领先,就是在光纤芯间耦合与串扰的解决方面找到了一条较为妥当的解决方案。
孜孜不倦的住友电气
按照日媒的表述,负责专利相关事务的日本特许厅2018年发布的报告显示,在光纤的多核领域,在世界上已申请的专利件数的前4家企业为藤仓、住友电气、NTT和古河电气工业。其中的标志性事件是2017年NICT成功创造了短距离数据中心网络的交换容量世界纪录: 53.3 Tb/s,这一项纪录的实现就依靠了跨越多核光纤的空分复用技术,在当年的9月21日在瑞典哥德堡召开的久负盛名的第43届光学通信系统欧洲会议(ECOC)上,这篇被选为杰出论文。
聚焦专利申请领域,以“多芯光纤”为关键词搜索国家知识产权局网站,申请人统计结果如下:
可以看出,住友电气株式会社的申请数量为94个,排名第二的哈尔滨工程大学(75)和桂林电子科技大学(62);从企业专利的角度看,不算日本的住友和藤仓,国内江苏中天和长飞光纤光缆排名前两位。
去年住友电气一共有三项专利在国家知识产权局注册,查阅三项专利的具体设置,可以直观了解这家在光纤传输领域深耕不辍的日本公司的技术发力点都在哪些方面。这三项分别为:一对单一透镜将多芯光纤连接器(公布时间2020年3月4日),即第一透镜机构及第二透镜机构彼此之间的光学耦合;提供能够提高激励光的利用效率的光放大器(公布时间2020年5月18日),所涉及的光放大器具有:激励激光器,其射出激励光;以及外部谐振器等,通过这项专利,可以提高激励光的利用效率;住友电气最近的一个专利申请公布日期为去年7月份,通过查阅这项标为“多芯光纤”的一共28页的权利要求书和发明专利申请书,基本可以判断几天前日媒广泛报道的“突破性技术”主要是基于对这一则专利的描述。
这则专利主要想解决的问题是短距离光传输中同时如何保证实现优异的经济合理性和高兼容性,这项“多芯光纤”包括多个芯部部分、共同包层和树脂涂层,内包层的折射率相对于共同包层的折射率而言偏移,使得内包层和共同包层之间的折射率的大小关系相反——对此,专利发明书在解释环节中,毫不隐讳地点明了,MCF技术看似在理论层面不断取得突破,却迟迟无法商业化的主要原因,是传统的MCF无法同时实现经济合理性和广泛兼容性二者,因为从单核到多核,理论上会出现信号互相干扰的串扰(XT),导致通信质量的劣化。
欧美MCF领先,但也不必妄自菲薄
如果我们以媒体报道和学术期刊的MCF词频做一个大数据研究,就会发现以NICT、KDDI、NTT为代表的日本光通讯研究机构在MCF领域有优良的技术积累,以Bell实验室为代表的欧美研究机构也在步步紧跟,不过如果更换一个赛道来看,从市场占有率和营收的角度,目前世界上排名前十的光纤通讯企业,中国占了一半,而住友仅排第八位,如下图:
排名第一的毋庸纷说,是行业的巨无霸,也是基础研发和市场应用做的最好的美国公司Corning,年营收超过100亿美元,紧随其后的则是YOFC,即长飞光纤——国内最早的光纤光缆生产厂商之一。长飞光纤公司拥有完善的研发平台和国内光纤光缆行业内唯一的国家重点实验室,产品线研发专注于光纤预制棒、光纤光缆、特种光纤及其应用等技术和产品,和很多日本厂家的业务领域并不完全重合,截止2020年6月,公司共拥有授权的有效专利总数近500件,海外授权专利77件,国内厂家诸如长飞光纤、亨通光电(HTGD)、烽火通信(Fiberhome)、富通集团(Futong)之类的龙头企业往往在更细分的下游市场展开搏杀,色散补偿光纤、保偏光纤市场等潜力巨大,总的来说,在MCF领域还没有和住友电气等展开全面竞争。
但这并不意味着中国光纤通讯的市场拓展没有针对未来技术突破的导向型储备,光纤通讯行业和半导体行业类似的地方是国际分工细密,上下游产业链互相依存度高,生态效应浓厚。所以它非常需要“善其事”的练兵场,也需要有“利其器”的核心技术,而中国5G市场的蓬勃发展和消费终端电子产业的成熟度都为这些企业准备了良好的施展拳脚的空间。
根据工信部于2020年7月发布的数据,三家国有电信运营商2020年上半年新建5G基站25.7万个,截至6月底全国累计5G基站数量达到41万个,截至6月末,全国光缆线路总长度达到4890万公里,同比增加7.6%,国际业界在普遍用“道路和车辆”比喻光纤通讯和承载量的时候,往往忽视基础之前的还有一个预基础,就是建设道路的“铺路石”——通讯基站和居民、企业等互联网用户终端应用。
并且,在研发领域解决芯间耦合与串扰也并非打通学院与市场的充要条件,提高纤芯复用的空间密度的同时,实现光网络整体容量的增长,还需要收发端机集成度的提升和网络节点转发处理能力,换言之,全光交换技术和光子集成技术仍然是全球光纤通讯木桶原理中亟需补强的短板,另外,MCF领域和5G技术的共通性在于全球标准化原则的制定,四年前全球ITU-T SG15全会期间,日本代表团多个场合对多心光纤技术的标准化研究遭到冷遇,众多欧美设备商和运营商的专家普遍认为此项技术尚处在发展早期,商用前景依然不明朗。
结论
以住友电气为代表的日本企业在空分复用光纤领域确实较为雄厚的技术积累,并且在抑制不同芯区间的串扰、精确定位光纤芯区,降低耦合难度等亟待攻克的难题上有了突破性进展,但众多国内企业则依托国家重点实验室,在多芯光纤预制棒的组装等差异化赛道上与日企隔空展开竞争;而且从实验室-商用的过渡阶段上,日本企业并未有明显的身位领先,5G通讯技术和电子消费领域这些宏观市场的相对狭窄,也是限制日企空分复用光纤技术拓展的最大障碍之一。
责任编辑:tzh
最新内容
手机 |
相关内容
射频连接器使用技巧与注意事项
射频连接器使用技巧与注意事项,连接器,选择,频率,类型,连接,传输,射频连接器是一种用于连接射频电路的电子元件,常用于无线通信系统人形机器人风起,连接器待势乘时
人形机器人风起,连接器待势乘时,连接器,人形机器人,工作效率,性强,研发,光纤,近年来,人形机器人在人工智能领域取得了巨大的进展。随美光低功耗内存解决方案助力高通第
美光低功耗内存解决方案助力高通第二代骁龙XR2平台,解决方案,助力,低功耗,内存,美光,第二代,随着虚拟现实(VR)和增强现实(AR)技术的迅猛工业物联网数据采集:从Modbus到MQTT
工业物联网数据采集:从Modbus到MQTT,数据采集,物联网,模式,网关,协议,数据,工业物联网(Industrial Internet of Things,IIoT)的核心任务一文了解PTC热敏电阻(贴片式)
一文了解PTC热敏电阻(贴片式),容量,布局,安装,超过,温度,响应,PTC热敏电阻(Positive Temperature Coefficient Thermistor)是一种热敏所有遥不可及,终因AI触手可及
所有遥不可及,终因AI触手可及,出行,平台,无人驾驶汽车,导致,人工智能,学习,人类历史上,有许多事物曾被认为是遥不可及的,然而随着科技安森美宣布其Hyperlux 图像传感器
安森美宣布其Hyperlux 图像传感器系列已集成到瑞萨R-Car V4x平台,平台,到瑞,集成,图像,汽车制造商,辅助功能,安森美(ON Semiconducto黑芝麻智能助力亿咖通科技旗下首款
黑芝麻智能助力亿咖通科技旗下首款智能驾驶计算平台成功量产交付,智能驾驶,计算,助力,首款,交付,智能,近年来,智能驾驶技术逐渐成为