首页 / 行业
升压转换器的工作模式和作用
2021-02-11 10:22:00

随着电池和超级电容等高效蓄能器的大量使用,更好的电流控制成为一种趋势。而双向DC/DC转换器可以保持电池健康,并延长其使用寿命。
简介
电池供电的便携式设备越来越多,在如今的生活中扮演的角色也愈发重要。这个趋势还取决于高能量存储技术的发展,例如锂离子(Li-ion)电池和超级电容器。这些蓄能器连接到可再生能源系统(太阳能和风能),收集和存储能源,并稳定提供给用户。其中一些应用需要快速充电或放电。这里我们将要介绍的是一种双向DC-DC转换器,其双向性允许电流发生器同时具备充电和放电能力。双向控制器可以为汽车双电池系统提供出色的性能和便利性。而且,在降压和升压模式中采用相同的电路模块,大大降低了系统的复杂性和尺寸,甚至可以获得高达97%的能源效率,并且可以控制双向传递的最大电流。
电气原理
图1显示了简单但功能齐全的电气图,其对称配置可让用户选择四种不同的工作模式。它由四个级联降压-升压转换器的单相象限组成,包括四个开关、一个电感器和两个电容器。根据不同电子开关的功能,电路可以降低或升高输入电压。开关元件由碳化硅(SiC) MOSFET UF3C065080T3S组成,当然也可以用其它器件代替。
图1:双向降压-升压转换器接线图
四种工作模式
用户可以简单配置四个MOSFET来决定电路的工作模式,具体包括如下四种:
电池位于“A”端,负载位于“B”端,从“A”到“B”为降压
电池位于“A”端,负载位于“B”端,从“A”到“B”为升压
电池位于“B”端,负载位于“A”端,从“B”到“A”为降压
电池位于“B”端,负载位于“A”端,从“B”到“A”为升压
在该电路中,SiC MOSFET可以三种不同的方式工作:
导通,对地为正电压;
关断,电压为0;
脉动,具方波和50%PWM。其频率应根据具体工作条件进行选择。
四个SiC MOSFET的工作模式和作用
模式一:降压(Buck)A-B
选择模式一,电路将作为降压器工作,即输出电压低于输入电压的转换器。这种电路也称为“step-down”。 其电压发生器需连接在A侧,而负载连接在B侧。负载效率取决于所采用的MOSFET器件。具体配置如下:
SW1:以10 kHz方波频率进行切换
SW2:关断,即断开开关
SW3:关断,即断开开关
SW4:关断,即断开开关
其输入电压为12 V,输出电压约为9 V,因此电路可用作降压器。其开关频率选择为10 kHz,输出端负载为22 Ohm,功耗约为4W。
Buck A-B模式下的输入和输出电压。
模式二:升压A-B
模式二提供升压操作,即作为输出电压高于输入电压的转换器。这种电路也称为“step-up”。 电压发生器需连接在A侧,而负载连接在B侧。负载效率取决于所采用的MOSFET器件。具体配置如下:
SW1:导通,即关闭开关(栅级供电)
SW2:关断,即断开开关
SW3:关断,即断开开关
SW4:以10 kHz方波频率进行切换
Boost A-B模式下的输入和输出电压。其输入电压为12 V,输出电压约为35V,因此电路可用作升压器。其开关频率选择为10 kHz,输出端负载为22 Ohm,功耗约为55W。
Boost A-B模式下的输入和输出电压。
模式三:降压B-A
选择模式三,电路也作为降压器工作,即输出电压低于输入电压的转换器。其电压发生器需连接在B侧,而负载连接在A侧。负载效率取决于所采用的MOSFET器件。具体配置如下:
SW1:关断,即断开开关
SW2:关断,即断开开关
SW3:以100 kHz方波频率进行切换
SW4:关断,即断开开关
其输入电压为24 V,输出电压约为6.6V,因此电路可用作降压器。其开关频率选择为100 kHz,输出端负载为10 Ohm。
Buck B-A模式下的输入和输出电压。
模式四:升压B-A
选择模式四,电路作为升压器工作,即输出电压高于输入电压的转换器。这种电路也称为“step-up”。其电压发生器需连接在B侧,而负载连接在A侧。负载效率取决于所采用的MOSFET器件。具体配置如下:
SW1:关断,即断开开关
SW2:以100 kHz方波频率进行切换
SW3:导通,即关闭开关(栅级供电)
SW4:关断,即断开开关
其输入电压为18V,输出电压约为22V,因此电路可用作升压器。其开关频率选择为100 kHz,输出端负载为22 Ohm,功耗约为22W。
Boost B-A模式下的输入和输出电压。
结论
电路的效率取决于许多因素,首先是所采用的MOSFET导通电阻Rds(on),它决定了电流是否容易通过。 另外,这种配有四个功率开关的电路需要进行认真的安全检查。 如果SW1和SW2(或SW3和SW4)同时处于导通状态,则可能造成短路,从而损坏器件。
责任编辑:pj
最新内容
手机 |
相关内容
什么是互感器,互感器的组成、特点、
什么是互感器,互感器的组成、特点、原理、分类、操作规程及发展趋势,发展趋势,分类,输入,计量,用于,信号,AD574AKD互感器是一种用于电流互感器作用 电流互感器为什么
电流互感器作用 电流互感器为什么一端要接地?,作用,误差,原因,连接,测量,短路故障,电流互感器(Current Transformer,简称CT)是一种用于晶振在激光雷达系统中的作用
晶振在激光雷达系统中的作用,作用,系统,激光雷达,晶振,可靠性,选择,激光雷达(Lidar)是一种利用激光进行测距的技术,广泛应用于自动驾驶人形机器人风起,连接器待势乘时
人形机器人风起,连接器待势乘时,连接器,人形机器人,工作效率,性强,研发,光纤,近年来,人形机器人在人工智能领域取得了巨大的进展。随浅析动力电池熔断器的基础知识及选
浅析动力电池熔断器的基础知识及选型,动力电池,时切,系统安全,作用,产品,系统,BA4558F-E2动力电池熔断器是用于保护动力电池系统安应用在阀门控制中的直流有刷驱动芯
应用在阀门控制中的直流有刷驱动芯片,芯片,控制,支持,远程控制,电动,调节,直流有刷驱动芯片是一种用于控制直流电机的IPB072N15N3G振弦传感器智能化:电子标签模块
振弦传感器智能化:电子标签模块,模块,传感器,操作,连接,安装,控制,mbrs360t3g振弦传感器是一种常用的测量设备,用于检测物体的振动。智能家居中的MEMS传感器
智能家居中的MEMS传感器,传感器,智能家居,控制,用户,温度传感器,系统,MEMS(微机电系统)传感器是智能家居中的关键技术之一。它们是一