首页 / 行业
多BLDC电机磁场定向控制策略及解决方案
2020-04-01 11:33:00
2020年3月27日,由电子发烧友网主办的2020年第三届无刷直流电机控制技术研讨会在线上成功举行。国民技术电机方案开发工程师舒晓华分享了多BLDC电机磁场定向控制策略及解决方案。
舒晓华从磁场定向控制(FOC)理论基础和多FOC应用软件设计要求的角度,分享了国民技术多FOC电机应用中的MCU选型重点以及国民技术N32G455系列高效电机主控解决方案,并总结了基于N32G455系列电机主控电流采样重构和PWM重构的优势特点。
其中,坐标变换包括Clark变换实现UVW→αβ变换、Park变换实现αβ→dq变换、Park逆变换实现dq→αβ变换、SVPWM为Clark逆变换实现αβ→UVW变换。
PI(D)本质是实现误差控制误差,在FOC电机控制中,电流环、速度环控制一般使用PI进行控制。
无感位置估算主要有SMO和MRAS两种方式。其中SMO的核心是对电机模块进行变换,得到电流观测器模型,根据电流模型的值和反馈的电流值进行差值判断,不断调整参数使误差最小。
MRAS通过自适应机构来修改可调模型中的参数(增益、速度等),使可调模型中的状态矢量趋近于参考模型中的状态矢量,也就是使共有矢量的差值趋近于零,最终达到速度观测的目的。国民技术电机套件提供的SMO反电势估算具有数字化相位补偿,选用波波夫稳定性理论(MRAS)的设计方法,具有调试参数少、低速观测性能好、直接闭环起动等优点。
舒晓华介绍,FOC软件设计模块的重难点在于两方面:一是核心依赖是转子的电角度计算,包括:无感SMO、无感MRAS、有感HALL。二是FOC的电流重构方法,包括双电阻电流采样和单电阻电流采样,后者需重构PWM输出波形。为了支持多FOC,转子电角度计算方法需统一的接口如下:
初始化函数void xxx_Init(Struct *Pst);
角度计算函数uint16_t xxx_CalcAngle(Struct *Pst);
速度计算函数uint16_t xxx_GetSpeed(Struct *Pst);
MCU作为底层支持,对于多FOC电机应用中的MCU选型,舒晓华给出如下参考,主要包括ADC数量、PWM数量、OPAMP数量、MCU主频等。
舒晓华介绍了N32G455系列的多FOC电机控制解决方案,通过内置最多7个快速比较器与PWM模块联动,快速响应刹车事件,拥有高达4个独立的5Msps的12bit ADC,支持PWM定时器连动自动触发采样。最重要的是配置高达144Hz的高性能32位ARM Cortex-M4F处理器,支持硬件乘除运算。
基于MCU控制的无刷直流电机消除了刷子磨损和弧形机构,该技术使电机具有更高的效率,更高的转矩-惯量比,更高的速度性能,更低的噪声,更好的热效率和低EMI特性。从而使电机在更低成本下可以更为高效的稳定可靠运行,并从整体上降低了整机成本。
据介绍,针对电机控制应用市场,国民技术有针对性地规划了系列化的芯片产品和解决方案,覆盖高、中、低电机市场应用。
图:单FOC执行时间低至10.1μs图:电机带载正反转切换成功跨越零点电流波形
观看本场直播精彩回放,请点击:http://webinar.elecfans.com/replay/478.html
本文由电子发烧友网原创,未经授权禁止转载。如需转载,请添加微信号elecfans999.
舒晓华从磁场定向控制(FOC)理论基础和多FOC应用软件设计要求的角度,分享了国民技术多FOC电机应用中的MCU选型重点以及国民技术N32G455系列高效电机主控解决方案,并总结了基于N32G455系列电机主控电流采样重构和PWM重构的优势特点。
FOC(磁场定向控制)理论基础
FOC理论框架如下,其中坐标变换、电角度计算(无感,有感)、PI(D)控制是核心理论,电流采用虽然不是核心理论,但是涉及到具体的项目、开发板、电机时相关度最大,因此非常重要。其中,坐标变换包括Clark变换实现UVW→αβ变换、Park变换实现αβ→dq变换、Park逆变换实现dq→αβ变换、SVPWM为Clark逆变换实现αβ→UVW变换。
PI(D)本质是实现误差控制误差,在FOC电机控制中,电流环、速度环控制一般使用PI进行控制。
无感位置估算主要有SMO和MRAS两种方式。其中SMO的核心是对电机模块进行变换,得到电流观测器模型,根据电流模型的值和反馈的电流值进行差值判断,不断调整参数使误差最小。
MRAS通过自适应机构来修改可调模型中的参数(增益、速度等),使可调模型中的状态矢量趋近于参考模型中的状态矢量,也就是使共有矢量的差值趋近于零,最终达到速度观测的目的。国民技术电机套件提供的SMO反电势估算具有数字化相位补偿,选用波波夫稳定性理论(MRAS)的设计方法,具有调试参数少、低速观测性能好、直接闭环起动等优点。
多FOC应用中的软件设计策略
根据FOC的理论基础,对多FOC应用中的软件设计策略首先是框架的软件抽象,要遵循FOC引擎的设计原则:独立地提供方法库,统一的属性资源分配,面向对象的设计方法。舒晓华介绍,FOC软件设计模块的重难点在于两方面:一是核心依赖是转子的电角度计算,包括:无感SMO、无感MRAS、有感HALL。二是FOC的电流重构方法,包括双电阻电流采样和单电阻电流采样,后者需重构PWM输出波形。为了支持多FOC,转子电角度计算方法需统一的接口如下:
初始化函数void xxx_Init(Struct *Pst);
角度计算函数uint16_t xxx_CalcAngle(Struct *Pst);
速度计算函数uint16_t xxx_GetSpeed(Struct *Pst);
MCU作为底层支持,对于多FOC电机应用中的MCU选型,舒晓华给出如下参考,主要包括ADC数量、PWM数量、OPAMP数量、MCU主频等。
多FOC的解决方案
通过采用先进的无位置传感器FOC控制策略,国民技术在一颗N32G455芯片上实现了压缩机FOC调速功能、风机转矩控制、电子膨胀阀控制、NTC检测、串口监控以及各种安全保护措施。舒晓华介绍了N32G455系列的多FOC电机控制解决方案,通过内置最多7个快速比较器与PWM模块联动,快速响应刹车事件,拥有高达4个独立的5Msps的12bit ADC,支持PWM定时器连动自动触发采样。最重要的是配置高达144Hz的高性能32位ARM Cortex-M4F处理器,支持硬件乘除运算。
基于MCU控制的无刷直流电机消除了刷子磨损和弧形机构,该技术使电机具有更高的效率,更高的转矩-惯量比,更高的速度性能,更低的噪声,更好的热效率和低EMI特性。从而使电机在更低成本下可以更为高效的稳定可靠运行,并从整体上降低了整机成本。
据介绍,针对电机控制应用市场,国民技术有针对性地规划了系列化的芯片产品和解决方案,覆盖高、中、低电机市场应用。
如何快速搭建多FOC电机验证平台?
为了方便验证,舒晓华介绍了搭建多FOC电机验证平台“五步法”:环境准备、确认电机参数、确认开发板参数、确认角度计算方法、确认电机运行模式。以基于国民技术双FOC电机控制评估套件搭建多FOC电机验证平台为例:单FOC执行时间低至10.1us,电机带载正反转切换成功跨越零点电流波形、无角度丢失。图:单FOC执行时间低至10.1μs图:电机带载正反转切换成功跨越零点电流波形
观看本场直播精彩回放,请点击:http://webinar.elecfans.com/replay/478.html
本文由电子发烧友网原创,未经授权禁止转载。如需转载,请添加微信号elecfans999.
最新内容
手机 |
相关内容
什么是高压接触器,高压接触器的组成
什么是高压接触器,高压接触器的组成、特点、原理、分类、常见故障及预防措施,高压,分类,闭合,用于,操作,损坏,AD694ARZ高压接触器是什么是射流继电器,射流继电器的基本
什么是射流继电器,射流继电器的基本结构、技术参数、工作原理、负载分类、如何选用、操作规程及发展历程,继电器,工作原理,分类,负什么是NFC控制器,NFC控制器的组成、
什么是NFC控制器,NFC控制器的组成、特点、原理、分类、常见故障及预防措施,控制器,分类,模式,移动支付,数据,信号,NFC(Near Field Com电流互感器作用 电流互感器为什么
电流互感器作用 电流互感器为什么一端要接地?,作用,误差,原因,连接,测量,短路故障,电流互感器(Current Transformer,简称CT)是一种用于华为公开半导体芯片专利:可提高三维
华为公开半导体芯片专利:可提高三维存储器的存储密度,专利,存储密度,存储器,芯片,存储单元,调整,华为是全球领先的信息与通信技术解美光低功耗内存解决方案助力高通第
美光低功耗内存解决方案助力高通第二代骁龙XR2平台,解决方案,助力,低功耗,内存,美光,第二代,随着虚拟现实(VR)和增强现实(AR)技术的迅猛应用在阀门控制中的直流有刷驱动芯
应用在阀门控制中的直流有刷驱动芯片,芯片,控制,支持,远程控制,电动,调节,直流有刷驱动芯片是一种用于控制直流电机的IPB072N15N3G振弦传感器智能化:电子标签模块
振弦传感器智能化:电子标签模块,模块,传感器,操作,连接,安装,控制,mbrs360t3g振弦传感器是一种常用的测量设备,用于检测物体的振动。