首页 / 行业
深度学习想变革安防行业 首先要补齐深度学习的短板
2019-12-19 09:32:00
目标识别、物体检测、智能分析……随着深度学习算法的进步,安防技术取得了突破性进展。深度学习被看做安防行业的革命性力量,大大加速了安防的发展过程。
在这样的情境下,全球人工智能计算机视觉领域奠基人之一、约翰霍普金斯大学教授艾伦·尤尔抛出“深度学习(Deep learning)在计算机视觉领域的瓶颈已至”的观点,引发业内许多专家共鸣与热议。
深度学习变革安防行业
目前,深度学习的研究领域主要集中在语音识别和计算机视觉方面,而计算机视觉作为人工智能落地过程中的“显学”,被各行各业所重视。对拥有海量视频图像资源的安防行业而言,深度学习能够对这些资源进行分析,实现利用。
例如:在人脸识别方面,深度学习大幅提升了复杂任务分类的准确率,可以实现人脸检测、身份对比、活体检测等功能;在智能视频分析方面,可以做到人、非机动车和机动车的视频结构化研究。基于此,安防行业一跃成为当红“炸子鸡”。
成也是“标注数据” 败也是“标注数据”
然而,深度学习却有很多局限性。众所周知,深度学习需要基于大量的标注数据,这些数据需要由人类进行标注,而人类的弱点则导致了深度学习的许多缺陷:
大量的数据需求使得研究人员的焦点过度集中于容易的任务,回避重要且困难的任务,因此,在基准数据集上,深度学习表现良好,但脱离数据集,进入真实世界后,就有出现重大失误的风险,尤其是数据集中不常出现的情形,例如,在动物园监控场景下,“相机出现在猴子手里”等情况。
此外,从组合学观点来看,真实世界图像的信息量无疑远远大于人工标注的图片信息,这使得深度学习对图像中的变化非常敏感,导致系统判断出错,这对训练和应用都提出了巨大的挑战。
如何补齐深度学习的短板?
深度学习的短板要如何补齐?既然深度学习的关键在于大量人工标注的数据,那么,解决数据带来的问题,或许可以继续从数据方面着手。
一种解决方案是简单地扩大训练数据的范围,即通过更多的训练数据使网络自动吸取经验、已更快地学习新任务。这听起来更像是人类的学习方法。
不过,人工智能是对人类智能的模仿,而深度学习只是众多AI技术中的一种。人类本身并非主要依赖深度学习,并且可以收集多维度的数据,借助“触类旁通”的能力来进行认知,因此,在安防行业,深度学习需要与知识图谱、机器记忆、语义识别等不同维度的手段相结合,弥补自身短板。
结语:总而言之,在未来一段时间内,深度学习仍将对智慧安防行业的发展起着积极的推动作用,与此同时,业内人士也已经明晰了深度学习本身存在的局限,并对此进行探索,以弥补其不足。
最新内容
手机 |
相关内容
重庆东微电子推出高性能抗射频干扰
重庆东微电子推出高性能抗射频干扰MEMS硅麦放大器芯片,芯片,推出,算法,抑制,音频,信号,重庆东微电子有限公司最近推出了一款高性能DigiKey 推出《超越医疗科技》视频
DigiKey 推出《超越医疗科技》视频系列的第一季,推出,医疗科技,健康,需求,产品,诊断,全球供应品类丰富、发货快速的现货技术元器件台积电1.4nm,有了新进展
台积电1.4nm,有了新进展,台积电,行业,需求,竞争力,支持,芯片,近日,台积电(TSMC)宣布将探索1.4纳米技术,这是一项令人振奋的举措,将有望为E智能传感器助力打造数字经济数字世
智能传感器助力打造数字经济数字世界,数字,经济,传感器,助力,智能,及时发现,PCM1801U智能传感器是一种能够感知环境并将感知结果转不只是芯片 看看传感器技术我们离
不只是芯片 看看传感器技术我们离世界顶级有多远,传感器,芯片,位置,测量,交通,用于,传感器技术是现代科技中至关重要的一部分,它们被消除“间隙”:力敏传感器如何推动新
消除“间隙”:力敏传感器如何推动新颖的HMI设计,传感器,智能手机,交互,交互方式,操作,用户,随着科技的不断发展,人机交互界面(HMI)的设射频前端芯片GC1103在智能家居无线
射频前端芯片GC1103在智能家居无线通信IoT模块中应用,模块,芯片,无线通信,智能家居,支持,数据交换,射频前端芯片GC1103是一种低功耗所有遥不可及,终因AI触手可及
所有遥不可及,终因AI触手可及,出行,平台,无人驾驶汽车,导致,人工智能,学习,人类历史上,有许多事物曾被认为是遥不可及的,然而随着科技