首页 / 行业
可实时深组织成像并控制的微机器人系统
2019-07-30 10:57:00
想象一下,未来某天我们会制造出如细胞般大小,具有微纳米尺度的马达、汽车、飞机、潜水艇、甚至机器人。这些微纳米尺度的马达或机器人可以在我们的血液中游弋,携带药物运动到病患区域、最终治疗威胁人类生命的疾病。
今年,加州理工学院高伟(Wei Gao)教授研究团队和汪立宏(Lihong V. Wang)教授研究团队设计的可在肠道内实时定位并控制的微米机器人系统,正在向这些科幻作品中的情节一步步靠近……
这项合作完成的突破今天以An ingestible microrobtic system using photoacoustic imaging for targeted navigation in intestine为题,发表于Science Robotics,引起微纳机器人界的广泛关注。
常规的药物递送主要依靠血液循环运输完成,这种被动扩散方法受到多重生物屏障的阻碍不但导致有效剂量严重不足同时引发全身性的毒副作用,难以完成精准药物递送的需求。微纳机器人因其可在生物流体中进行可控自主运动,被认为是靶向药物递送的理想方案。但是,对于微纳机器人的实际医学应用,如何让微纳机器人实现在体内实时成像与控制仍然面临着挑战。
可实时深组织成像并控制的微机器人系统
面对微纳机器人体内深层组织下实时成像与控制的难题,Science Robotics今天上线的这篇论文,介绍了加州理工学院高伟教授团队与汪立宏教授研究团队合作的最新研究成果,该研究成果为解决微纳米机器人生物医疗中体内成像和控制的瓶颈难题提供了思路。
研究团队设计了基于光声断层扫描技术实现动物体内实施成像并控制的微机器人系统。他们将微米机器人包裹于具有保护层的微胶囊内以免于胃酸等流体的侵蚀,借助光声断层成像技术,包裹在微胶囊内的载药微纳机器人可在动物体内的实时定位,当微机器人胶囊抵达体内病患区域(比如肠道肿瘤)时,外源近红外光可以穿透深层组织并引发胶囊破裂从而释放微机器人。释放出的微机器人依靠其高效游动可穿越生物屏障最终实现在病患区域的滞留和持久的药物传递。
高伟教授认为,这种微米机器人可以穿透消化道的粘液并在那里停留很长时间。这有助于提高药物的供给,由于这种微米机器人主要由镁组成,因此具有生物相容性和生物可降解性。我们设想构建到达患病区域后可按需激活微型机器人,下一步的研究将着力于这种机器人的治疗效果。
汪立宏教授对于生物医学微纳米机器人的未来做了进一步的思考:你可以把这种微型机器人微放在你需要的地方,它们未来可以被用于药物递送或者智能微手术。高伟教授与汪立宏院士团队还将继续合作以期实现更多突破。
作为论文的通讯作者之一,高伟教授近年来致力于柔性电子、可穿戴设备和生物医学纳米机器人方面的研究并在《自然》、《自然 通讯》、《美国国家科学院院刊》、《美国化学会会刊》、《纳米通讯》、《美国化学会 纳米》、《先进材料》等期刊发表论文80余篇,总引用超过9000次,高引用次数 (H-index) 51。
最新内容
手机 |
相关内容
逆变器技术对新能源汽车市场增长的
逆变器技术对新能源汽车市场增长的重要性,市场,新能源汽车,逆变器,控制,高效率,能和,随着全球对环境保护和可持续发展的关注不断增什么是高压接触器,高压接触器的组成
什么是高压接触器,高压接触器的组成、特点、原理、分类、常见故障及预防措施,高压,分类,闭合,用于,操作,损坏,AD694ARZ高压接触器是什么是射流继电器,射流继电器的基本
什么是射流继电器,射流继电器的基本结构、技术参数、工作原理、负载分类、如何选用、操作规程及发展历程,继电器,工作原理,分类,负什么是NFC控制器,NFC控制器的组成、
什么是NFC控制器,NFC控制器的组成、特点、原理、分类、常见故障及预防措施,控制器,分类,模式,移动支付,数据,信号,NFC(Near Field Com什么是电机启动器,电机启动器的基本
什么是电机启动器,电机启动器的基本结构、优缺点、工作原理、类型、检测、操作规程及发展历程,工作原理,类型,检测,结构,启动,断开,电流互感器作用 电流互感器为什么
电流互感器作用 电流互感器为什么一端要接地?,作用,误差,原因,连接,测量,短路故障,电流互感器(Current Transformer,简称CT)是一种用于半导体主控技术:驱动自动驾驶革命的
半导体主控技术:驱动自动驾驶革命的引擎,自动驾驶,交通,自动驾驶系统,数据,车辆,自动,随着科技的不断进步,自动驾驶技术已经成为现实晶振在激光雷达系统中的作用
晶振在激光雷达系统中的作用,作用,系统,激光雷达,晶振,可靠性,选择,激光雷达(Lidar)是一种利用激光进行测距的技术,广泛应用于自动驾驶