• 1
  • 2
  • 3
  • 4

首页 / 行业

推荐系统中候选生成和冷启动挑战的研究

2019-07-30 10:22:00

本研究针对推荐系统冷启动和候选生成两方面的问题,提出了一种基于深度学习的分类方法。研究人员提出了一种分类的深度学习技术,来解决推荐系统中的冷启动和候选生成问题。

冷启动是通过附加功能(用于音频、图像、文本)和学习隐藏的用户与对象表示来解决的。候选生成则通过分离的网络、RNNs、自动编码器和混合方法解决。该研究还总结了这些技术的优点和局限性,同时展望了未来研究的方向。

推荐系统为企业和客户提供了许多便利。它们使消费者的搜索过程变得非常简单,并帮助企业实现更高的销量、更高的网络使用率、更高的客户保留率和更高的利润率。

Netflix上80%的电影都有推荐系统。在YouTube上,60%的视频点击来自推荐。本文描述的工作是为未来开发稳定的推荐系统进行的有益尝试。


冷启动推荐系统方法深度学习

  • 1
  • 2
  • 3
  • 4

最新内容

手机

相关内容

  • 1
  • 2
  • 3

猜你喜欢