• 1
  • 2
  • 3
  • 4

首页 / 资料库 / 电路图

频率范围量程扩展电路

2023-09-18 22:01:00

频率范围量程扩展电路

按照上述方法所设计的数字频率计电路,测量的最高频率只能为9.999kHz,完成一次测量的时间约1.25s。若被测信号频率增加到数百千赫兹或数兆赫兹时,则需要增加频率范围扩展电路。

频率范围扩展电路如图3所示,该电路可实现频率量程的自动转换。其工作原理是:当被测信号频率升高,千位计数器已满,需要升量程时,计数器的最高位产生进位脉冲Q3,送到由74LS92与两个D触发器共同构成的进位脉冲采集电路。第一个D触发器的1D端接高电平,当Q3的下跳沿来到时,74LS92的Q0端输出高电平,则第一个D触发器的1Q端产生进位脉冲并保持到清“0”脉冲到来。该进位脉冲使多路数据选择器74LS151的地址计数器74LS90加1,多路数据选择器将选通下一路输入信号,即比上一次频率低10倍的分频信号,由于此时个位计数器的输入脉冲的频率比被测频率低10倍,故要将显示器的数乘以10才能得到被测频率值,这可以通过移动显示器上小数点的位置来实现。如图3所示,若被测信号不经过分频(100输出),显示器上的最大值为9.999kHz,若经过101分频后,显示器上的最大值为99.99 kHz,即小数点每向右移动一位,频率的测量范围扩大10倍。
进位脉冲采集电路的作用是使电路工作稳定,避免当千位计数器到8或9时,产生小数点的跳动。第二个D触发器用来控制清“0”,即有进位脉冲时电路不清“0”,而无进位时则清“0”。
当被测频率降低需要转换到低量程时,可用千位(最高位)是否为零来判断。在此利用千位译码器74LS48的灭零输出端RBO,当RBO端为零时,输出为零,这时就需要降量程。因此,取其非作为地址计数器74LS90的清“0”脉冲。为了能把高位多余的零熄灭,只需把高位的灭零输入端RBI,同时把高位的RBO与低位的RBI相连即可。由此可见,只有当检测到最高位为“0”,并且在该1秒钟内没有进位脉冲时,地址计数器才清“0”复位,即转换到最低量程,然后再按升量程的原理自动换档,直到找到合适的量程。若将地址译码器74LS138的输出端取非,变成高电平以驱动显示器的小数点h,则可显示扩展的频率范围。

频率扩展电路图信号处理量程电路

  • 1
  • 2
  • 3
  • 4

最新内容

手机

相关内容

  • 1
  • 2
  • 3

猜你喜欢