首页 / 行业
基于低损耗聚合物的太赫兹量子级联激光器介绍
2023-01-08 17:26:00
集成光学是一种用来制作集成光学器件、光子集成回路或者平面光波回路的技术,其中集成光源、分束器、调制器、高约束波导等集成光学器件的应用,有效提高了光信号处理的效率。
越来越多的科研人员把目光转向集成中红外和太赫兹光子学在通信和传感领域的研究。
在太赫兹频率范围内,太赫兹量子级联激光器逐渐成为集成半导体梳状光源的绝佳选择。
传统的太赫兹集成系统包括混合等离子体波导、耦合腔器件、集成太赫兹收发器以及一些硅基集成器件。
近期,苏黎世联邦理工学院的Giacomo Scalari教授和Urban Senica博士带领的研究团队基于集成在低损耗聚合物平面化的双金属、高约束波导布局中的有源和无源元件,成功研发出一种新型集成太赫兹量子级联激光器。
新型集成太赫兹光子学平台示意图
在复杂的集成光学系统中,激光集成的关键特性在于降低了电消耗,从而降低了注入电流,并有效地耦合到低损耗无源波导。研究团队所提出的集成光子平台,能够利用无源器件进行信号传播,并为宽带传感和电子通信等应用提供相干集成光源。他们利用一个公共金属接地层来演示在同一半导体平台上集成多个有源和无源太赫兹光子器件,从而在太赫兹频率下实现高效的信号处理。
在实验中,研究人员致力于宽带器件和频梳器件,突出了色散、射频、热性能等多个关键品质因数的改进,在同一光子芯片上实现了有源器件和无源器件的集成。器件整体是基于一个高性能的光滑双金属波导,这种波导早已在太赫兹和微波领域被证明非常有效。
研究团队表示,横向模式的控制对于获得规则的梳频谱至关重要。由于波导损耗增加,侧面吸收体的引入减轻了高阶横模中的激光发射。通过将激光器脊的横向尺寸减小到50μm及以下,可以获得类似的结果。然而,对于传统的双金属脊而言,由于波导通常通过直接在顶部金属包层上的引线键合来接触,因此宽度不能任意小。这种情况限制了有效脊的宽度和接合线贴片的尺寸,使得脊尺寸在50μm及以下的器件难以接触并且容易失效。而且,直接在有源区上结合会引入缺陷,增加波导损耗,有损害器件的长期性能及其光谱特性的风险。
但在该团队设计的集成光学平台中,这些问题都已经被解决。他们将接合线放置在无源、苯并环丁烯覆盖区域上方的金属顶部,有效避免了在有源区顶部形成任何缺陷,并且能够制造非常窄的波导,远低于接合线尺寸。窄波导宽度可以用作基本横向激光模式的有效选择机制,并且也有利于散热和高温连续波操作。
审核编辑:刘清
最新内容
手机 |
相关内容
光耦仿真器简介和优势
光耦仿真器简介和优势,仿真器,参数,接收器,设计方案,耦合,器件,光耦仿真器是一种用于模拟光耦合器件的工具,它可以帮助工程师在设计FPGA学习笔记:逻辑单元的基本结构
FPGA学习笔记:逻辑单元的基本结构,结构,单元,逻辑运算,数字,信号,结构单元,FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件射频前端芯片GC1103在智能家居无线
射频前端芯片GC1103在智能家居无线通信IoT模块中应用,模块,芯片,无线通信,智能家居,支持,数据交换,射频前端芯片GC1103是一种低功耗安森美宣布其Hyperlux 图像传感器
安森美宣布其Hyperlux 图像传感器系列已集成到瑞萨R-Car V4x平台,平台,到瑞,集成,图像,汽车制造商,辅助功能,安森美(ON Semiconducto有史以来最快的半导体“超原子”能
有史以来最快的半导体“超原子”能将芯片速度提升千倍,芯片,提升,可靠性,运动,结构,集成度,在半导体技术的发展历程中,有一项被称为直播回顾 | 宽禁带半导体材料及功
直播回顾 | 宽禁带半导体材料及功率半导体器件测试,测试,性能测试,常见,参数,可靠性,器件,宽禁带半导体材料及功率半导体器件是现代氮化镓(GaN)功率器件技术解析
氮化镓(GaN)功率器件技术解析,技术解析,器件,能力,传输,用于,高频,氮化镓(GaN)功率器件是一种新兴的EPF6016AQC208-3半导体功率器件技清华研制出首个全模拟光电智能计算
清华研制出首个全模拟光电智能计算芯片ACCEL,芯片,智能计算,模拟,清华,混合,研发,清华大学最近成功研制出了一款全模拟光电智能计算