首页 / 行业
毫米波天线集成技术——AiP
2022-10-12 01:13:00
不管是在消费电子领域,工业自动化领域,还是在汽车自动驾驶领域,毫米波的应用现在越来越多,实现了更智能化的感知通信体验。通常,毫米波模块安装在由收发器、天线、电源管理电路、存储器和接口外设组成的印刷电路板上。
其中毫米波天线在毫米波组件中的地位举足轻重。毫米波波长要比低频率波波长短很多,而天线尺寸与电磁波波长成正比,因此毫米波天线的尺寸要比低频率天线小很多,也因此波束宽度要小很多,能量更加集中。
虽然客观上毫米波雷达天线尺寸小一些,但是不同的天线技术会直接影响到天线在板上损耗和效率,尤其是损耗这一方面,毫米波的路径损耗本身就会比低频率波大。可以说毫米波天线集成技术是实现毫米波高分辨数据流、移动分布式计算等应用场景的关键技术。
毫米波天线阵列实现方式
目前毫米波天线集成的实现方式可分为两大类——AoC和AiP。AoC天线将辐射原件直接集成到射频芯片栈的后端,这种集成方式可以在一个仅几平方毫米小尺寸单一模块上做到没有任何射频互连和射频与基带功能的相互集成。AiP则基于封装材料与工艺,将天线与芯片集成在封装内,实现系统级无线功能。
AoC技术需要先进的后处理步骤或封装工艺,以减少严重的介电损耗。在当前的技术条件下,这种集成方式目前看来竞争力并不在毫米波频段,该天线集成技术在成本和性能上的性价比更适合较毫米波有更高宽带和更高载波频率的频段。
AiP技术可以说是5G毫米波频段毫米波终端天线最适合的方案。AiP技术能兼顾天线性能、成本及体积,相比传统天线与射频模块的分散式设计更顺应硅基半导体工艺集成度提高的潮流。AiP天线集成技术进一步将各类通信元件,如传送收发器、电源管理芯片、射频前端等元件与天线整并在一起,达到缩小厚度与减少PCB面积的目的。目前大多数60GHz无线通信和雷达芯片都采用了AiP技术。
AiP示意,LPKF
AiP技术助力下的毫米波
毫米波对于垂直行业的价值已经得到各产业界广泛的认同,AiP天线技术无疑在其中发挥了重要作用。利用AiP天线技术,布板空间的节省大大降低了模块的外形尺寸,器件到天线的布线距离缩短也有利于降低功率损耗。另一方面,我们知道PCB 上的天线是需要使用高频基板材料的,AiP天线技术可以降低天线对高频基板材料的需求。如TI的AiP技术利用倒装芯片封装技术直接将天线集成到无塑封装基板上,防止因天线穿过塑封材料时产生损耗而降低效率并导致杂散辐射。
AiP加持的毫米波雷达,TI
在各种需要传感器感知环境的场景里,可以说有着毫米波雷达广阔的用武之地,AiP天线技术则帮助毫米波雷达大大强化了近场感知能力。下图是加特兰基于AiP毫米波雷达的人员检测演示截图,从3D追踪效果来看AiP技术大大增加了雷达的距离分辨率,而且视野足够宽阔。在汽车ADAS应用里,利用AiP高度集成的毫米波传感器也能应用在各种检测中,点云效果也很优秀。AiP毫米波雷达解决了普通毫米波雷达尺寸大、功耗高等一系列问题。
基于AiP毫米波雷达的人员检测,加特兰微电子
在通信方面AiP技术同样效果明显,虽说5G毫米波特性带动了天线尺寸缩小,但将不同元件整合在单一封装中,仍然会存在散热等诸多问题。高通的QTM毫米波模块方案也是利用AiP天线技术解决这些问题,在5G毫米波通信集成天线封装模块上处于领先地位。5G毫米波模块的升级也带动了天线封装AiP技术的持续发展。
小结
天线集成的根本是将一个相控阵所需的所有组件集成到一个芯片上,这是硅基毫米波天线系统的优势所在。在毫米波应用大放异彩的今天,AiP技术优化了毫米波性能,给予了毫米波充裕的设计灵活性,也将毫米波推向更多的应用领域。
其中毫米波天线在毫米波组件中的地位举足轻重。毫米波波长要比低频率波波长短很多,而天线尺寸与电磁波波长成正比,因此毫米波天线的尺寸要比低频率天线小很多,也因此波束宽度要小很多,能量更加集中。
虽然客观上毫米波雷达天线尺寸小一些,但是不同的天线技术会直接影响到天线在板上损耗和效率,尤其是损耗这一方面,毫米波的路径损耗本身就会比低频率波大。可以说毫米波天线集成技术是实现毫米波高分辨数据流、移动分布式计算等应用场景的关键技术。
毫米波天线阵列实现方式
目前毫米波天线集成的实现方式可分为两大类——AoC和AiP。AoC天线将辐射原件直接集成到射频芯片栈的后端,这种集成方式可以在一个仅几平方毫米小尺寸单一模块上做到没有任何射频互连和射频与基带功能的相互集成。AiP则基于封装材料与工艺,将天线与芯片集成在封装内,实现系统级无线功能。
AoC技术需要先进的后处理步骤或封装工艺,以减少严重的介电损耗。在当前的技术条件下,这种集成方式目前看来竞争力并不在毫米波频段,该天线集成技术在成本和性能上的性价比更适合较毫米波有更高宽带和更高载波频率的频段。
AiP技术可以说是5G毫米波频段毫米波终端天线最适合的方案。AiP技术能兼顾天线性能、成本及体积,相比传统天线与射频模块的分散式设计更顺应硅基半导体工艺集成度提高的潮流。AiP天线集成技术进一步将各类通信元件,如传送收发器、电源管理芯片、射频前端等元件与天线整并在一起,达到缩小厚度与减少PCB面积的目的。目前大多数60GHz无线通信和雷达芯片都采用了AiP技术。
AiP示意,LPKF
AiP技术助力下的毫米波
毫米波对于垂直行业的价值已经得到各产业界广泛的认同,AiP天线技术无疑在其中发挥了重要作用。利用AiP天线技术,布板空间的节省大大降低了模块的外形尺寸,器件到天线的布线距离缩短也有利于降低功率损耗。另一方面,我们知道PCB 上的天线是需要使用高频基板材料的,AiP天线技术可以降低天线对高频基板材料的需求。如TI的AiP技术利用倒装芯片封装技术直接将天线集成到无塑封装基板上,防止因天线穿过塑封材料时产生损耗而降低效率并导致杂散辐射。
AiP加持的毫米波雷达,TI
在各种需要传感器感知环境的场景里,可以说有着毫米波雷达广阔的用武之地,AiP天线技术则帮助毫米波雷达大大强化了近场感知能力。下图是加特兰基于AiP毫米波雷达的人员检测演示截图,从3D追踪效果来看AiP技术大大增加了雷达的距离分辨率,而且视野足够宽阔。在汽车ADAS应用里,利用AiP高度集成的毫米波传感器也能应用在各种检测中,点云效果也很优秀。AiP毫米波雷达解决了普通毫米波雷达尺寸大、功耗高等一系列问题。
基于AiP毫米波雷达的人员检测,加特兰微电子
在通信方面AiP技术同样效果明显,虽说5G毫米波特性带动了天线尺寸缩小,但将不同元件整合在单一封装中,仍然会存在散热等诸多问题。高通的QTM毫米波模块方案也是利用AiP天线技术解决这些问题,在5G毫米波通信集成天线封装模块上处于领先地位。5G毫米波模块的升级也带动了天线封装AiP技术的持续发展。
小结
天线集成的根本是将一个相控阵所需的所有组件集成到一个芯片上,这是硅基毫米波天线系统的优势所在。在毫米波应用大放异彩的今天,AiP技术优化了毫米波性能,给予了毫米波充裕的设计灵活性,也将毫米波推向更多的应用领域。
最新内容
手机 |
相关内容
写flash芯片时为什么需要先擦除?
写flash芯片时为什么需要先擦除?,擦除,芯片,充电,初始状态,存储单元,数据,Flash芯片是一种非易失性存储器技术,用于存储数据并实现固射频连接器使用技巧与注意事项
射频连接器使用技巧与注意事项,连接器,选择,频率,类型,连接,传输,射频连接器是一种用于连接射频电路的电子元件,常用于无线通信系统华为公开半导体芯片专利:可提高三维
华为公开半导体芯片专利:可提高三维存储器的存储密度,专利,存储密度,存储器,芯片,存储单元,调整,华为是全球领先的信息与通信技术解低耗能,小安派-LRW-TH1传感器通用板
低耗能,小安派-LRW-TH1传感器通用板,一块板即可连接多种传感器!,传感器,多种,连接,一块,通用,接口,小安派-LRW-TH1传感器通用板是一款射频前端芯片GC1103在智能家居无线
射频前端芯片GC1103在智能家居无线通信IoT模块中应用,模块,芯片,无线通信,智能家居,支持,数据交换,射频前端芯片GC1103是一种低功耗变频器过载保护和过流保护有什么区
变频器过载保护和过流保护有什么区别?,变频器,频率,超过,损害,方法,负载,BCP55变频器过载保护和过流保护是两种不同的保护机制,用于保应用在阀门控制中的直流有刷驱动芯
应用在阀门控制中的直流有刷驱动芯片,芯片,控制,支持,远程控制,电动,调节,直流有刷驱动芯片是一种用于控制直流电机的IPB072N15N3G振弦传感器智能化:电子标签模块
振弦传感器智能化:电子标签模块,模块,传感器,操作,连接,安装,控制,mbrs360t3g振弦传感器是一种常用的测量设备,用于检测物体的振动。